Metamath Proof Explorer


Theorem dfon2lem7

Description: Lemma for dfon2 . All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Hypothesis dfon2lem7.1 𝐴 ∈ V
Assertion dfon2lem7 ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( 𝐵𝐴 → ∀ 𝑦 ( ( 𝑦𝐵 ∧ Tr 𝑦 ) → 𝑦𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dfon2lem7.1 𝐴 ∈ V
2 elequ1 ( 𝑡 = 𝑧 → ( 𝑡𝑡𝑧𝑡 ) )
3 elequ2 ( 𝑡 = 𝑧 → ( 𝑧𝑡𝑧𝑧 ) )
4 2 3 bitrd ( 𝑡 = 𝑧 → ( 𝑡𝑡𝑧𝑧 ) )
5 4 notbid ( 𝑡 = 𝑧 → ( ¬ 𝑡𝑡 ↔ ¬ 𝑧𝑧 ) )
6 5 cbvralvw ( ∀ 𝑡𝑥 ¬ 𝑡𝑡 ↔ ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
7 6 biimpi ( ∀ 𝑡𝑥 ¬ 𝑡𝑡 → ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
8 7 ralimi ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑡𝑥 ¬ 𝑡𝑡 → ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
9 untuni ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ¬ 𝑧𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
10 8 9 sylibr ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑡𝑥 ¬ 𝑡𝑡 → ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ¬ 𝑧𝑧 )
11 vex 𝑥 ∈ V
12 sseq1 ( 𝑤 = 𝑥 → ( 𝑤𝐴𝑥𝐴 ) )
13 treq ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) )
14 raleq ( 𝑤 = 𝑥 → ( ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
15 12 13 14 3anbi123d ( 𝑤 = 𝑥 → ( ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) ) )
16 11 15 elab ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
17 vex 𝑡 ∈ V
18 dfon2lem3 ( 𝑡 ∈ V → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢𝑡 ¬ 𝑢𝑢 ) ) )
19 17 18 ax-mp ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢𝑡 ¬ 𝑢𝑢 ) )
20 19 simprd ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ∀ 𝑢𝑡 ¬ 𝑢𝑢 )
21 untelirr ( ∀ 𝑢𝑡 ¬ 𝑢𝑢 → ¬ 𝑡𝑡 )
22 20 21 syl ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ¬ 𝑡𝑡 )
23 22 ralimi ( ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ∀ 𝑡𝑥 ¬ 𝑡𝑡 )
24 23 3ad2ant3 ( ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ∀ 𝑡𝑥 ¬ 𝑡𝑡 )
25 16 24 sylbi ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑡𝑥 ¬ 𝑡𝑡 )
26 10 25 mprg 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ¬ 𝑧𝑧
27 untelirr ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ¬ 𝑧𝑧 → ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } )
28 psseq2 ( 𝑡 = 𝑢 → ( 𝑦𝑡𝑦𝑢 ) )
29 28 anbi1d ( 𝑡 = 𝑢 → ( ( 𝑦𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦𝑢 ∧ Tr 𝑦 ) ) )
30 elequ2 ( 𝑡 = 𝑢 → ( 𝑦𝑡𝑦𝑢 ) )
31 29 30 imbi12d ( 𝑡 = 𝑢 → ( ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
32 31 albidv ( 𝑡 = 𝑢 → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
33 32 cbvralvw ( ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) )
34 33 3anbi3i ( ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) ↔ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
35 34 abbii { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
36 35 unieqi { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
37 36 eleq2i ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
38 27 37 sylnib ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ¬ 𝑧𝑧 → ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
39 26 38 ax-mp ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
40 dfon2lem2 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴
41 1 40 ssexi { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ V
42 41 snss ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ↔ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
43 39 42 mtbi ¬ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
44 43 intnan ¬ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
45 df-suc suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } )
46 45 sseq1i ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ) ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
47 unss ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ) ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
48 46 47 bitr4i ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) )
49 44 48 mtbir ¬ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
50 41 snss ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 ↔ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ 𝐴 )
51 45 sseq1i ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ) ⊆ 𝐴 )
52 unss ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ 𝐴 ) ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ) ⊆ 𝐴 )
53 51 52 bitr4i ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ 𝐴 ) )
54 dfon2lem1 Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) }
55 suctr ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } )
56 54 55 ax-mp Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) }
57 vex 𝑢 ∈ V
58 57 elsuc ( 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ ( 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∨ 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
59 eluni2 ( 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } 𝑢𝑥 )
60 nfa1 𝑥𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 )
61 32 rspccv ( ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( 𝑢𝑥 → ∀ 𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
62 psseq1 ( 𝑦 = 𝑥 → ( 𝑦𝑢𝑥𝑢 ) )
63 treq ( 𝑦 = 𝑥 → ( Tr 𝑦 ↔ Tr 𝑥 ) )
64 62 63 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑥𝑢 ∧ Tr 𝑥 ) ) )
65 elequ1 ( 𝑦 = 𝑥 → ( 𝑦𝑢𝑥𝑢 ) )
66 64 65 imbi12d ( 𝑦 = 𝑥 → ( ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ↔ ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
67 66 cbvalvw ( ∀ 𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
68 61 67 syl6ib ( ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( 𝑢𝑥 → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
69 68 3ad2ant3 ( ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ( 𝑢𝑥 → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
70 16 69 sylbi ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑢𝑥 → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
71 60 70 rexlimi ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } 𝑢𝑥 → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
72 59 71 sylbi ( 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
73 psseq1 ( 𝑦 = 𝑧 → ( 𝑦𝑢𝑧𝑢 ) )
74 treq ( 𝑦 = 𝑧 → ( Tr 𝑦 ↔ Tr 𝑧 ) )
75 73 74 anbi12d ( 𝑦 = 𝑧 → ( ( 𝑦𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑧𝑢 ∧ Tr 𝑧 ) ) )
76 elequ1 ( 𝑦 = 𝑧 → ( 𝑦𝑢𝑧𝑢 ) )
77 75 76 imbi12d ( 𝑦 = 𝑧 → ( ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ↔ ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) ) )
78 77 cbvalvw ( ∀ 𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ↔ ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) )
79 61 78 syl6ib ( ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( 𝑢𝑥 → ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) ) )
80 79 3ad2ant3 ( ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ( 𝑢𝑥 → ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) ) )
81 16 80 sylbi ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑢𝑥 → ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) ) )
82 81 rexlimiv ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } 𝑢𝑥 → ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) )
83 59 82 sylbi ( 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) )
84 83 rgen 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 )
85 dfon2lem6 ( ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ ∀ 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑧 ( ( 𝑧𝑢 ∧ Tr 𝑧 ) → 𝑧𝑢 ) ) → ∀ 𝑥 ( ( 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
86 54 84 85 mp2an 𝑥 ( ( 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } )
87 psseq2 ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑥𝑢𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
88 87 anbi1d ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ( 𝑥𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ Tr 𝑥 ) ) )
89 eleq2 ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑥𝑢𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
90 88 89 imbi12d ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ( ( 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) ) )
91 90 albidv ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) ) )
92 86 91 mpbiri ( 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
93 72 92 jaoi ( ( 𝑢 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∨ 𝑢 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
94 58 93 sylbi ( 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) )
95 94 rgen 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 )
96 41 sucex suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ V
97 sseq1 ( 𝑠 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑠𝐴 ↔ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ) )
98 treq ( 𝑠 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( Tr 𝑠 ↔ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
99 raleq ( 𝑠 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
100 97 98 99 3anbi123d ( 𝑠 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) ↔ ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) ) )
101 96 100 elab ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } ↔ ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
102 elssuni ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } )
103 101 102 sylbir ( ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } )
104 56 95 103 mp3an23 ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } )
105 sseq1 ( 𝑠 = 𝑤 → ( 𝑠𝐴𝑤𝐴 ) )
106 treq ( 𝑠 = 𝑤 → ( Tr 𝑠 ↔ Tr 𝑤 ) )
107 raleq ( 𝑠 = 𝑤 → ( ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑢𝑤𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) )
108 psseq1 ( 𝑥 = 𝑦 → ( 𝑥𝑢𝑦𝑢 ) )
109 treq ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) )
110 108 109 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑦𝑢 ∧ Tr 𝑦 ) ) )
111 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑢𝑦𝑢 ) )
112 110 111 imbi12d ( 𝑥 = 𝑦 → ( ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
113 112 cbvalvw ( ∀ 𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) )
114 113 ralbii ( ∀ 𝑢𝑤𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) )
115 107 114 bitrdi ( 𝑠 = 𝑤 → ( ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ↔ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) )
116 105 106 115 3anbi123d ( 𝑠 = 𝑤 → ( ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) ↔ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) ) )
117 116 cbvabv { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
118 117 unieqi { 𝑠 ∣ ( 𝑠𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢𝑠𝑥 ( ( 𝑥𝑢 ∧ Tr 𝑥 ) → 𝑥𝑢 ) ) } = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) }
119 104 118 sseqtrdi ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } )
120 119 a1i ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) )
121 53 120 syl5bir ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ 𝐴 ) → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) )
122 40 121 mpani ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } } ⊆ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) )
123 50 122 syl5bi ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢𝑤𝑦 ( ( 𝑦𝑢 ∧ Tr 𝑦 ) → 𝑦𝑢 ) ) } ) )
124 49 123 mtoi ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 )
125 psseq1 ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑥𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 ) )
126 treq ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( Tr 𝑥 ↔ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) )
127 125 126 anbi12d ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ( 𝑥𝐴 ∧ Tr 𝑥 ) ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) ) )
128 eleq1 ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑥𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 ) )
129 127 128 imbi12d ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ↔ ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 ) ) )
130 41 129 spcv ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 ) )
131 54 130 mpan2i ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∈ 𝐴 ) )
132 124 131 mtod ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 )
133 dfpss2 ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 ) )
134 133 biimpri ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊆ 𝐴 ∧ ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 )
135 40 134 mpan ( ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ⊊ 𝐴 )
136 132 135 nsyl2 ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 )
137 eluni2 ( 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } 𝑧𝑥 )
138 psseq2 ( 𝑡 = 𝑧 → ( 𝑦𝑡𝑦𝑧 ) )
139 138 anbi1d ( 𝑡 = 𝑧 → ( ( 𝑦𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦𝑧 ∧ Tr 𝑦 ) ) )
140 elequ2 ( 𝑡 = 𝑧 → ( 𝑦𝑡𝑦𝑧 ) )
141 139 140 imbi12d ( 𝑡 = 𝑧 → ( ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
142 141 albidv ( 𝑡 = 𝑧 → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
143 142 cbvralvw ( ∀ 𝑡𝑥𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) )
144 14 143 bitrdi ( 𝑤 = 𝑥 → ( ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
145 12 13 144 3anbi123d ( 𝑤 = 𝑥 → ( ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) ) )
146 11 145 elab ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
147 rsp ( ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) → ( 𝑧𝑥 → ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
148 147 3ad2ant3 ( ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧𝑥𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) → ( 𝑧𝑥 → ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
149 146 148 sylbi ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ( 𝑧𝑥 → ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
150 149 rexlimiv ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } 𝑧𝑥 → ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) )
151 137 150 sylbi ( 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } → ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) )
152 151 rgen 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 )
153 raleq ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 → ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ↔ ∀ 𝑧𝐴𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ) )
154 152 153 mpbii ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) } = 𝐴 → ∀ 𝑧𝐴𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) )
155 psseq2 ( 𝑧 = 𝐵 → ( 𝑦𝑧𝑦𝐵 ) )
156 155 anbi1d ( 𝑧 = 𝐵 → ( ( 𝑦𝑧 ∧ Tr 𝑦 ) ↔ ( 𝑦𝐵 ∧ Tr 𝑦 ) ) )
157 eleq2 ( 𝑧 = 𝐵 → ( 𝑦𝑧𝑦𝐵 ) )
158 156 157 imbi12d ( 𝑧 = 𝐵 → ( ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ↔ ( ( 𝑦𝐵 ∧ Tr 𝑦 ) → 𝑦𝐵 ) ) )
159 158 albidv ( 𝑧 = 𝐵 → ( ∀ 𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) ↔ ∀ 𝑦 ( ( 𝑦𝐵 ∧ Tr 𝑦 ) → 𝑦𝐵 ) ) )
160 159 rspccv ( ∀ 𝑧𝐴𝑦 ( ( 𝑦𝑧 ∧ Tr 𝑦 ) → 𝑦𝑧 ) → ( 𝐵𝐴 → ∀ 𝑦 ( ( 𝑦𝐵 ∧ Tr 𝑦 ) → 𝑦𝐵 ) ) )
161 136 154 160 3syl ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( 𝐵𝐴 → ∀ 𝑦 ( ( 𝑦𝐵 ∧ Tr 𝑦 ) → 𝑦𝐵 ) ) )