Step |
Hyp |
Ref |
Expression |
1 |
|
dfon2lem7.1 |
⊢ 𝐴 ∈ V |
2 |
|
elequ1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡 ) ) |
3 |
|
elequ2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
4 |
2 3
|
bitrd |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑡 = 𝑧 → ( ¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧 ) ) |
6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
7 |
6
|
biimpi |
⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
9 |
|
untuni |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
10 |
8 9
|
sylibr |
⊢ ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
13 |
|
treq |
⊢ ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) ) |
14 |
|
raleq |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
15 |
12 13 14
|
3anbi123d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) ) |
16 |
11 15
|
elab |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
17 |
|
vex |
⊢ 𝑡 ∈ V |
18 |
|
dfon2lem3 |
⊢ ( 𝑡 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) ) |
20 |
19
|
simprd |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) |
21 |
|
untelirr |
⊢ ( ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 → ¬ 𝑡 ∈ 𝑡 ) |
22 |
20 21
|
syl |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ¬ 𝑡 ∈ 𝑡 ) |
23 |
22
|
ralimi |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
25 |
16 24
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
26 |
10 25
|
mprg |
⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 |
27 |
|
untelirr |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) |
28 |
|
psseq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑢 ) ) |
29 |
28
|
anbi1d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ) ) |
30 |
|
elequ2 |
⊢ ( 𝑡 = 𝑢 → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑢 ) ) |
31 |
29 30
|
imbi12d |
⊢ ( 𝑡 = 𝑢 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
32 |
31
|
albidv |
⊢ ( 𝑡 = 𝑢 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
33 |
32
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
34 |
33
|
3anbi3i |
⊢ ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
35 |
34
|
abbii |
⊢ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
36 |
35
|
unieqi |
⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
37 |
36
|
eleq2i |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
38 |
27 37
|
sylnib |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
39 |
26 38
|
ax-mp |
⊢ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
40 |
|
dfon2lem2 |
⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 |
41 |
1 40
|
ssexi |
⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ V |
42 |
41
|
snss |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
43 |
39 42
|
mtbi |
⊢ ¬ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
44 |
43
|
intnan |
⊢ ¬ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
45 |
|
df-suc |
⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) |
46 |
45
|
sseq1i |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
47 |
|
unss |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
48 |
46 47
|
bitr4i |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
49 |
44 48
|
mtbir |
⊢ ¬ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
50 |
41
|
snss |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ↔ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) |
51 |
45
|
sseq1i |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ 𝐴 ) |
52 |
|
unss |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ 𝐴 ) |
53 |
51 52
|
bitr4i |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) ) |
54 |
|
dfon2lem1 |
⊢ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } |
55 |
|
suctr |
⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) |
56 |
54 55
|
ax-mp |
⊢ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } |
57 |
|
vex |
⊢ 𝑢 ∈ V |
58 |
57
|
elsuc |
⊢ ( 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∨ 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
59 |
|
eluni2 |
⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 ) |
60 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) |
61 |
32
|
rspccv |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
62 |
|
psseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢 ) ) |
63 |
|
treq |
⊢ ( 𝑦 = 𝑥 → ( Tr 𝑦 ↔ Tr 𝑥 ) ) |
64 |
62 63
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ) ) |
65 |
|
elequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢 ) ) |
66 |
64 65
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
67 |
66
|
cbvalvw |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
68 |
61 67
|
syl6ib |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
69 |
68
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
70 |
16 69
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
71 |
60 70
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
72 |
59 71
|
sylbi |
⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
73 |
|
psseq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ⊊ 𝑢 ↔ 𝑧 ⊊ 𝑢 ) ) |
74 |
|
treq |
⊢ ( 𝑦 = 𝑧 → ( Tr 𝑦 ↔ Tr 𝑧 ) ) |
75 |
73 74
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) ) ) |
76 |
|
elequ1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢 ) ) |
77 |
75 76
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
78 |
77
|
cbvalvw |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
79 |
61 78
|
syl6ib |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
80 |
79
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
81 |
16 80
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
82 |
81
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
83 |
59 82
|
sylbi |
⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
84 |
83
|
rgen |
⊢ ∀ 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) |
85 |
|
dfon2lem6 |
⊢ ( ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) → ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
86 |
54 84 85
|
mp2an |
⊢ ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) |
87 |
|
psseq2 |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ⊊ 𝑢 ↔ 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
88 |
87
|
anbi1d |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) ) ) |
89 |
|
eleq2 |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
90 |
88 89
|
imbi12d |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
91 |
90
|
albidv |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
92 |
86 91
|
mpbiri |
⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
93 |
72 92
|
jaoi |
⊢ ( ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∨ 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
94 |
58 93
|
sylbi |
⊢ ( 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
95 |
94
|
rgen |
⊢ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) |
96 |
41
|
sucex |
⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ V |
97 |
|
sseq1 |
⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑠 ⊆ 𝐴 ↔ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ) ) |
98 |
|
treq |
⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( Tr 𝑠 ↔ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
99 |
|
raleq |
⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
100 |
97 98 99
|
3anbi123d |
⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) ) |
101 |
96 100
|
elab |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
102 |
|
elssuni |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) |
103 |
101 102
|
sylbir |
⊢ ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) |
104 |
56 95 103
|
mp3an23 |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) |
105 |
|
sseq1 |
⊢ ( 𝑠 = 𝑤 → ( 𝑠 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴 ) ) |
106 |
|
treq |
⊢ ( 𝑠 = 𝑤 → ( Tr 𝑠 ↔ Tr 𝑤 ) ) |
107 |
|
raleq |
⊢ ( 𝑠 = 𝑤 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
108 |
|
psseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊊ 𝑢 ↔ 𝑦 ⊊ 𝑢 ) ) |
109 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
110 |
108 109
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ) ) |
111 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢 ) ) |
112 |
110 111
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
113 |
112
|
cbvalvw |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
114 |
113
|
ralbii |
⊢ ( ∀ 𝑢 ∈ 𝑤 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
115 |
107 114
|
bitrdi |
⊢ ( 𝑠 = 𝑤 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
116 |
105 106 115
|
3anbi123d |
⊢ ( 𝑠 = 𝑤 → ( ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ↔ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) ) |
117 |
116
|
cbvabv |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } = { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
118 |
117
|
unieqi |
⊢ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
119 |
104 118
|
sseqtrdi |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
120 |
119
|
a1i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
121 |
53 120
|
syl5bir |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
122 |
40 121
|
mpani |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
123 |
50 122
|
syl5bi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
124 |
49 123
|
mtoi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) |
125 |
|
psseq1 |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ⊊ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) ) |
126 |
|
treq |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( Tr 𝑥 ↔ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
127 |
125 126
|
anbi12d |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
128 |
|
eleq1 |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ∈ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) |
129 |
127 128
|
imbi12d |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) ) |
130 |
41 129
|
spcv |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) |
131 |
54 130
|
mpan2i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) |
132 |
124 131
|
mtod |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
133 |
|
dfpss2 |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) ) |
134 |
133
|
biimpri |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
135 |
40 134
|
mpan |
⊢ ( ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
136 |
132 135
|
nsyl2 |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) |
137 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑧 ∈ 𝑥 ) |
138 |
|
psseq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑧 ) ) |
139 |
138
|
anbi1d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) ) ) |
140 |
|
elequ2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑧 ) ) |
141 |
139 140
|
imbi12d |
⊢ ( 𝑡 = 𝑧 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
142 |
141
|
albidv |
⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
143 |
142
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
144 |
14 143
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
145 |
12 13 144
|
3anbi123d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) ) |
146 |
11 145
|
elab |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
147 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
148 |
147
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
149 |
146 148
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
150 |
149
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
151 |
137 150
|
sylbi |
⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
152 |
151
|
rgen |
⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) |
153 |
|
raleq |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
154 |
152 153
|
mpbii |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
155 |
|
psseq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑦 ⊊ 𝑧 ↔ 𝑦 ⊊ 𝐵 ) ) |
156 |
155
|
anbi1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) ) ) |
157 |
|
eleq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐵 ) ) |
158 |
156 157
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
159 |
158
|
albidv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
160 |
159
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) → ( 𝐵 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
161 |
136 154 160
|
3syl |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |