Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
dfon2lem3 |
⊢ ( 𝑥 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) |
4 |
3
|
simpld |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Tr 𝑥 ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
6 |
|
trint |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Tr ∩ 𝐴 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → Tr ∩ 𝐴 ) |
9 |
1
|
dfon2lem7 |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
10 |
9
|
alrimiv |
⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
12 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
13 |
|
19.21v |
⊢ ( ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
15 |
12 14
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
16 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
17 |
16
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
18 |
|
eluni2 |
⊢ ( 𝑤 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ) |
19 |
18
|
biimpi |
⊢ ( 𝑤 ∈ ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ) |
20 |
19
|
imim1i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
21 |
20
|
alimi |
⊢ ( ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
22 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
23 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
24 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) ) |
25 |
24
|
imbi1i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
26 |
23 25
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
27 |
26
|
albii |
⊢ ( ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
28 |
22 27
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
29 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
30 |
21 28 29
|
3imtr4i |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
31 |
17 30
|
sylbir |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
32 |
15 31
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
33 |
11 32
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
35 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
36 |
|
ssralv |
⊢ ( ∩ 𝐴 ⊆ ∪ 𝐴 → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
37 |
35 36
|
syl |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
39 |
34 38
|
mpd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
40 |
|
dfon2lem6 |
⊢ ( ( Tr ∩ 𝐴 ∧ ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
41 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
42 |
|
dfon2lem3 |
⊢ ( ∩ 𝐴 ∈ V → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) ) |
43 |
41 42
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) ) |
44 |
43
|
imp |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) |
45 |
44
|
simprd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) |
46 |
|
untelirr |
⊢ ( ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) |
47 |
45 46
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) |
48 |
47
|
adantlr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) |
49 |
|
risset |
⊢ ( ∩ 𝐴 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) |
50 |
49
|
notbii |
⊢ ( ¬ ∩ 𝐴 ∈ 𝐴 ↔ ¬ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) |
51 |
|
ralnex |
⊢ ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 ↔ ¬ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) |
52 |
50 51
|
bitr4i |
⊢ ( ¬ ∩ 𝐴 ∈ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 ) |
53 |
|
eqcom |
⊢ ( 𝑡 = ∩ 𝐴 ↔ ∩ 𝐴 = 𝑡 ) |
54 |
53
|
notbii |
⊢ ( ¬ 𝑡 = ∩ 𝐴 ↔ ¬ ∩ 𝐴 = 𝑡 ) |
55 |
44
|
simpld |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → Tr ∩ 𝐴 ) |
56 |
55
|
adantlr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → Tr ∩ 𝐴 ) |
57 |
|
psseq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝑡 ) ) |
58 |
57
|
anbi1d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ) ) |
59 |
|
elequ2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑡 ) ) |
60 |
58 59
|
imbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
61 |
60
|
albidv |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
62 |
61
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
64 |
|
intss1 |
⊢ ( 𝑡 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑡 ) |
65 |
|
dfpss2 |
⊢ ( ∩ 𝐴 ⊊ 𝑡 ↔ ( ∩ 𝐴 ⊆ 𝑡 ∧ ¬ ∩ 𝐴 = 𝑡 ) ) |
66 |
|
psseq1 |
⊢ ( 𝑦 = ∩ 𝐴 → ( 𝑦 ⊊ 𝑡 ↔ ∩ 𝐴 ⊊ 𝑡 ) ) |
67 |
|
treq |
⊢ ( 𝑦 = ∩ 𝐴 → ( Tr 𝑦 ↔ Tr ∩ 𝐴 ) ) |
68 |
66 67
|
anbi12d |
⊢ ( 𝑦 = ∩ 𝐴 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) ) ) |
69 |
|
eleq1 |
⊢ ( 𝑦 = ∩ 𝐴 → ( 𝑦 ∈ 𝑡 ↔ ∩ 𝐴 ∈ 𝑡 ) ) |
70 |
68 69
|
imbi12d |
⊢ ( 𝑦 = ∩ 𝐴 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
71 |
70
|
spcgv |
⊢ ( ∩ 𝐴 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
72 |
41 71
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
73 |
72
|
imp |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) |
74 |
73
|
expd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ∩ 𝐴 ⊊ 𝑡 → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
75 |
65 74
|
syl5bir |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ( ∩ 𝐴 ⊆ 𝑡 ∧ ¬ ∩ 𝐴 = 𝑡 ) → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
76 |
75
|
exp4b |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ∩ 𝐴 ⊆ 𝑡 → ( ¬ ∩ 𝐴 = 𝑡 → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
77 |
76
|
com45 |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ∩ 𝐴 ⊆ 𝑡 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
78 |
77
|
com23 |
⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ⊆ 𝑡 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
79 |
64 78
|
syl5 |
⊢ ( 𝐴 ≠ ∅ → ( 𝑡 ∈ 𝐴 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
81 |
63 80
|
mpdd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) |
83 |
56 82
|
mpid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
84 |
54 83
|
syl7bi |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
85 |
84
|
ralrimiv |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∀ 𝑡 ∈ 𝐴 ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) |
86 |
|
ralim |
⊢ ( ∀ 𝑡 ∈ 𝐴 ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) → ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
88 |
52 87
|
syl5bi |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ¬ ∩ 𝐴 ∈ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
89 |
|
elintg |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
90 |
41 89
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
92 |
88 91
|
sylibrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ¬ ∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ ∩ 𝐴 ) ) |
93 |
48 92
|
mt3d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∩ 𝐴 ∈ 𝐴 ) |
94 |
93
|
ex |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝐴 ) ) |
95 |
94
|
ancld |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) ) |
96 |
40 95
|
syl5 |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ( Tr ∩ 𝐴 ∧ ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) ) |
97 |
8 39 96
|
mp2and |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) |