Metamath Proof Explorer


Theorem dfon2lem8

Description: Lemma for dfon2 . The intersection of a nonempty class A of new ordinals is itself a new ordinal and is contained within A (Contributed by Scott Fenton, 26-Feb-2011)

Ref Expression
Assertion dfon2lem8 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ∧ 𝐴𝐴 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 dfon2lem3 ( 𝑥 ∈ V → ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧𝑧 ) ) )
3 1 2 ax-mp ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧𝑧 ) )
4 3 simpld ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → Tr 𝑥 )
5 4 ralimi ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑥𝐴 Tr 𝑥 )
6 trint ( ∀ 𝑥𝐴 Tr 𝑥 → Tr 𝐴 )
7 5 6 syl ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → Tr 𝐴 )
8 7 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → Tr 𝐴 )
9 1 dfon2lem7 ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
10 9 alrimiv ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
11 10 ralimi ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑥𝐴𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
12 df-ral ( ∀ 𝑥𝐴𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
13 19.21v ( ∀ 𝑤 ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) ↔ ( 𝑥𝐴 → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
14 13 albii ( ∀ 𝑥𝑤 ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
15 12 14 bitr4i ( ∀ 𝑥𝐴𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑥𝑤 ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
16 impexp ( ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
17 16 2albii ( ∀ 𝑥𝑤 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑥𝑤 ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) )
18 eluni2 ( 𝑤 𝐴 ↔ ∃ 𝑥𝐴 𝑤𝑥 )
19 18 biimpi ( 𝑤 𝐴 → ∃ 𝑥𝐴 𝑤𝑥 )
20 19 imim1i ( ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ( 𝑤 𝐴 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
21 20 alimi ( ∀ 𝑤 ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ∀ 𝑤 ( 𝑤 𝐴 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
22 alcom ( ∀ 𝑥𝑤 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑤𝑥 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
23 19.23v ( ∀ 𝑥 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
24 df-rex ( ∃ 𝑥𝐴 𝑤𝑥 ↔ ∃ 𝑥 ( 𝑥𝐴𝑤𝑥 ) )
25 24 imbi1i ( ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
26 23 25 bitr4i ( ∀ 𝑥 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
27 26 albii ( ∀ 𝑤𝑥 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
28 22 27 bitri ( ∀ 𝑥𝑤 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥𝐴 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
29 df-ral ( ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ↔ ∀ 𝑤 ( 𝑤 𝐴 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
30 21 28 29 3imtr4i ( ∀ 𝑥𝑤 ( ( 𝑥𝐴𝑤𝑥 ) → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
31 17 30 sylbir ( ∀ 𝑥𝑤 ( 𝑥𝐴 → ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
32 15 31 sylbi ( ∀ 𝑥𝐴𝑤 ( 𝑤𝑥 → ∀ 𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
33 11 32 syl ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
34 33 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
35 intssuni ( 𝐴 ≠ ∅ → 𝐴 𝐴 )
36 ssralv ( 𝐴 𝐴 → ( ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
37 35 36 syl ( 𝐴 ≠ ∅ → ( ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
38 37 adantr ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) )
39 34 38 mpd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) )
40 dfon2lem6 ( ( Tr 𝐴 ∧ ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) )
41 intex ( 𝐴 ≠ ∅ ↔ 𝐴 ∈ V )
42 dfon2lem3 ( 𝐴 ∈ V → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑡 𝐴 ¬ 𝑡𝑡 ) ) )
43 41 42 sylbi ( 𝐴 ≠ ∅ → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑡 𝐴 ¬ 𝑡𝑡 ) ) )
44 43 imp ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( Tr 𝐴 ∧ ∀ 𝑡 𝐴 ¬ 𝑡𝑡 ) )
45 44 simprd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ∀ 𝑡 𝐴 ¬ 𝑡𝑡 )
46 untelirr ( ∀ 𝑡 𝐴 ¬ 𝑡𝑡 → ¬ 𝐴 𝐴 )
47 45 46 syl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ¬ 𝐴 𝐴 )
48 47 adantlr ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ¬ 𝐴 𝐴 )
49 risset ( 𝐴𝐴 ↔ ∃ 𝑡𝐴 𝑡 = 𝐴 )
50 49 notbii ( ¬ 𝐴𝐴 ↔ ¬ ∃ 𝑡𝐴 𝑡 = 𝐴 )
51 ralnex ( ∀ 𝑡𝐴 ¬ 𝑡 = 𝐴 ↔ ¬ ∃ 𝑡𝐴 𝑡 = 𝐴 )
52 50 51 bitr4i ( ¬ 𝐴𝐴 ↔ ∀ 𝑡𝐴 ¬ 𝑡 = 𝐴 )
53 eqcom ( 𝑡 = 𝐴 𝐴 = 𝑡 )
54 53 notbii ( ¬ 𝑡 = 𝐴 ↔ ¬ 𝐴 = 𝑡 )
55 44 simpld ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → Tr 𝐴 )
56 55 adantlr ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → Tr 𝐴 )
57 psseq2 ( 𝑥 = 𝑡 → ( 𝑦𝑥𝑦𝑡 ) )
58 57 anbi1d ( 𝑥 = 𝑡 → ( ( 𝑦𝑥 ∧ Tr 𝑦 ) ↔ ( 𝑦𝑡 ∧ Tr 𝑦 ) ) )
59 elequ2 ( 𝑥 = 𝑡 → ( 𝑦𝑥𝑦𝑡 ) )
60 58 59 imbi12d ( 𝑥 = 𝑡 → ( ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ↔ ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
61 60 albidv ( 𝑥 = 𝑡 → ( ∀ 𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ↔ ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
62 61 rspccv ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( 𝑡𝐴 → ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
63 62 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( 𝑡𝐴 → ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) )
64 intss1 ( 𝑡𝐴 𝐴𝑡 )
65 dfpss2 ( 𝐴𝑡 ↔ ( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡 ) )
66 psseq1 ( 𝑦 = 𝐴 → ( 𝑦𝑡 𝐴𝑡 ) )
67 treq ( 𝑦 = 𝐴 → ( Tr 𝑦 ↔ Tr 𝐴 ) )
68 66 67 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝑡 ∧ Tr 𝑦 ) ↔ ( 𝐴𝑡 ∧ Tr 𝐴 ) ) )
69 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑡 𝐴𝑡 ) )
70 68 69 imbi12d ( 𝑦 = 𝐴 → ( ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ↔ ( ( 𝐴𝑡 ∧ Tr 𝐴 ) → 𝐴𝑡 ) ) )
71 70 spcgv ( 𝐴 ∈ V → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( ( 𝐴𝑡 ∧ Tr 𝐴 ) → 𝐴𝑡 ) ) )
72 41 71 sylbi ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( ( 𝐴𝑡 ∧ Tr 𝐴 ) → 𝐴𝑡 ) ) )
73 72 imp ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ( ( 𝐴𝑡 ∧ Tr 𝐴 ) → 𝐴𝑡 ) )
74 73 expd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ( 𝐴𝑡 → ( Tr 𝐴 𝐴𝑡 ) ) )
75 65 74 syl5bir ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) ) → ( ( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡 ) → ( Tr 𝐴 𝐴𝑡 ) ) )
76 75 exp4b ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( 𝐴𝑡 → ( ¬ 𝐴 = 𝑡 → ( Tr 𝐴 𝐴𝑡 ) ) ) ) )
77 76 com45 ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( 𝐴𝑡 → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) ) )
78 77 com23 ( 𝐴 ≠ ∅ → ( 𝐴𝑡 → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) ) )
79 64 78 syl5 ( 𝐴 ≠ ∅ → ( 𝑡𝐴 → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) ) )
80 79 adantr ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( 𝑡𝐴 → ( ∀ 𝑦 ( ( 𝑦𝑡 ∧ Tr 𝑦 ) → 𝑦𝑡 ) → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) ) )
81 63 80 mpdd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( 𝑡𝐴 → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) )
82 81 adantr ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( 𝑡𝐴 → ( Tr 𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) ) )
83 56 82 mpid ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( 𝑡𝐴 → ( ¬ 𝐴 = 𝑡 𝐴𝑡 ) ) )
84 54 83 syl7bi ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( 𝑡𝐴 → ( ¬ 𝑡 = 𝐴 𝐴𝑡 ) ) )
85 84 ralrimiv ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ∀ 𝑡𝐴 ( ¬ 𝑡 = 𝐴 𝐴𝑡 ) )
86 ralim ( ∀ 𝑡𝐴 ( ¬ 𝑡 = 𝐴 𝐴𝑡 ) → ( ∀ 𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀ 𝑡𝐴 𝐴𝑡 ) )
87 85 86 syl ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( ∀ 𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀ 𝑡𝐴 𝐴𝑡 ) )
88 52 87 syl5bi ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( ¬ 𝐴𝐴 → ∀ 𝑡𝐴 𝐴𝑡 ) )
89 elintg ( 𝐴 ∈ V → ( 𝐴 𝐴 ↔ ∀ 𝑡𝐴 𝐴𝑡 ) )
90 41 89 sylbi ( 𝐴 ≠ ∅ → ( 𝐴 𝐴 ↔ ∀ 𝑡𝐴 𝐴𝑡 ) )
91 90 ad2antrr ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( 𝐴 𝐴 ↔ ∀ 𝑡𝐴 𝐴𝑡 ) )
92 88 91 sylibrd ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → ( ¬ 𝐴𝐴 𝐴 𝐴 ) )
93 48 92 mt3d ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ) → 𝐴𝐴 )
94 93 ex ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) → 𝐴𝐴 ) )
95 94 ancld ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ∧ 𝐴𝐴 ) ) )
96 40 95 syl5 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ( Tr 𝐴 ∧ ∀ 𝑤 𝐴𝑡 ( ( 𝑡𝑤 ∧ Tr 𝑡 ) → 𝑡𝑤 ) ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ∧ 𝐴𝐴 ) ) )
97 8 39 96 mp2and ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 𝐴 ∧ Tr 𝑧 ) → 𝑧 𝐴 ) ∧ 𝐴𝐴 ) )