Step |
Hyp |
Ref |
Expression |
1 |
|
ssralv |
⊢ ( 𝑧 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ) |
2 |
|
dfon2lem8 |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ∧ ∩ 𝑧 ∈ 𝑧 ) ) |
3 |
2
|
simprd |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∩ 𝑧 ∈ 𝑧 ) |
4 |
|
intss1 |
⊢ ( 𝑡 ∈ 𝑧 → ∩ 𝑧 ⊆ 𝑡 ) |
5 |
2
|
simpld |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) |
6 |
|
intex |
⊢ ( 𝑧 ≠ ∅ ↔ ∩ 𝑧 ∈ V ) |
7 |
|
dfon2lem3 |
⊢ ( ∩ 𝑧 ∈ V → ( ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) → ( Tr ∩ 𝑧 ∧ ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) ) ) |
8 |
7
|
imp |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( Tr ∩ 𝑧 ∧ ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) ) |
9 |
8
|
simprd |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) |
10 |
|
untelirr |
⊢ ( ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 → ¬ ∩ 𝑧 ∈ ∩ 𝑧 ) |
11 |
9 10
|
syl |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ¬ ∩ 𝑧 ∈ ∩ 𝑧 ) |
12 |
|
eleq1 |
⊢ ( ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ∈ ∩ 𝑧 ↔ 𝑡 ∈ ∩ 𝑧 ) ) |
13 |
12
|
notbid |
⊢ ( ∩ 𝑧 = 𝑡 → ( ¬ ∩ 𝑧 ∈ ∩ 𝑧 ↔ ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
14 |
11 13
|
syl5ibcom |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
15 |
14
|
a1dd |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
16 |
8
|
simpld |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → Tr ∩ 𝑧 ) |
17 |
|
trss |
⊢ ( Tr ∩ 𝑧 → ( 𝑡 ∈ ∩ 𝑧 → 𝑡 ⊆ ∩ 𝑧 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( 𝑡 ∈ ∩ 𝑧 → 𝑡 ⊆ ∩ 𝑧 ) ) |
19 |
|
eqss |
⊢ ( ∩ 𝑧 = 𝑡 ↔ ( ∩ 𝑧 ⊆ 𝑡 ∧ 𝑡 ⊆ ∩ 𝑧 ) ) |
20 |
19
|
simplbi2com |
⊢ ( 𝑡 ⊆ ∩ 𝑧 → ( ∩ 𝑧 ⊆ 𝑡 → ∩ 𝑧 = 𝑡 ) ) |
21 |
18 20
|
syl6 |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( 𝑡 ∈ ∩ 𝑧 → ( ∩ 𝑧 ⊆ 𝑡 → ∩ 𝑧 = 𝑡 ) ) ) |
22 |
21
|
com23 |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ( 𝑡 ∈ ∩ 𝑧 → ∩ 𝑧 = 𝑡 ) ) ) |
23 |
|
con3 |
⊢ ( ( 𝑡 ∈ ∩ 𝑧 → ∩ 𝑧 = 𝑡 ) → ( ¬ ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
24 |
22 23
|
syl6 |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ( ¬ ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
25 |
24
|
com23 |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ¬ ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
26 |
15 25
|
pm2.61d |
⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
27 |
6 26
|
sylanb |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
28 |
5 27
|
syldan |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
29 |
4 28
|
syl5 |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝑧 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
30 |
29
|
ralrimiv |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) |
31 |
|
eleq2 |
⊢ ( 𝑤 = ∩ 𝑧 → ( 𝑡 ∈ 𝑤 ↔ 𝑡 ∈ ∩ 𝑧 ) ) |
32 |
31
|
notbid |
⊢ ( 𝑤 = ∩ 𝑧 → ( ¬ 𝑡 ∈ 𝑤 ↔ ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑤 = ∩ 𝑧 → ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
34 |
33
|
rspcev |
⊢ ( ( ∩ 𝑧 ∈ 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
35 |
3 30 34
|
syl2anc |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
36 |
35
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
37 |
1 36
|
syl6com |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑧 ⊆ 𝐴 → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) ) |
38 |
37
|
impd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
39 |
38
|
alrimiv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
40 |
|
df-fr |
⊢ ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ) |
41 |
|
epel |
⊢ ( 𝑡 E 𝑤 ↔ 𝑡 ∈ 𝑤 ) |
42 |
41
|
notbii |
⊢ ( ¬ 𝑡 E 𝑤 ↔ ¬ 𝑡 ∈ 𝑤 ) |
43 |
42
|
ralbii |
⊢ ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
44 |
43
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ↔ ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
45 |
44
|
imbi2i |
⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
46 |
45
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
47 |
40 46
|
bitri |
⊢ ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
48 |
39 47
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → E Fr 𝐴 ) |