Metamath Proof Explorer


Theorem dfon2lem9

Description: Lemma for dfon2 . A class of new ordinals is well-founded by _E . (Contributed by Scott Fenton, 3-Mar-2011)

Ref Expression
Assertion dfon2lem9 ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → E Fr 𝐴 )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝑧𝐴 → ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) )
2 dfon2lem8 ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ∧ 𝑧𝑧 ) )
3 2 simprd ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → 𝑧𝑧 )
4 intss1 ( 𝑡𝑧 𝑧𝑡 )
5 2 simpld ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) )
6 intex ( 𝑧 ≠ ∅ ↔ 𝑧 ∈ V )
7 dfon2lem3 ( 𝑧 ∈ V → ( ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) → ( Tr 𝑧 ∧ ∀ 𝑥 𝑧 ¬ 𝑥𝑥 ) ) )
8 7 imp ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( Tr 𝑧 ∧ ∀ 𝑥 𝑧 ¬ 𝑥𝑥 ) )
9 8 simprd ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ∀ 𝑥 𝑧 ¬ 𝑥𝑥 )
10 untelirr ( ∀ 𝑥 𝑧 ¬ 𝑥𝑥 → ¬ 𝑧 𝑧 )
11 9 10 syl ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ¬ 𝑧 𝑧 )
12 eleq1 ( 𝑧 = 𝑡 → ( 𝑧 𝑧𝑡 𝑧 ) )
13 12 notbid ( 𝑧 = 𝑡 → ( ¬ 𝑧 𝑧 ↔ ¬ 𝑡 𝑧 ) )
14 11 13 syl5ibcom ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧 = 𝑡 → ¬ 𝑡 𝑧 ) )
15 14 a1dd ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧 ) ) )
16 8 simpld ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → Tr 𝑧 )
17 trss ( Tr 𝑧 → ( 𝑡 𝑧𝑡 𝑧 ) )
18 16 17 syl ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑡 𝑧𝑡 𝑧 ) )
19 eqss ( 𝑧 = 𝑡 ↔ ( 𝑧𝑡𝑡 𝑧 ) )
20 19 simplbi2com ( 𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡 ) )
21 18 20 syl6 ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡 ) ) )
22 21 com23 ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧𝑡 → ( 𝑡 𝑧 𝑧 = 𝑡 ) ) )
23 con3 ( ( 𝑡 𝑧 𝑧 = 𝑡 ) → ( ¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧 ) )
24 22 23 syl6 ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧𝑡 → ( ¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧 ) ) )
25 24 com23 ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( ¬ 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧 ) ) )
26 15 25 pm2.61d ( ( 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧𝑡 → ¬ 𝑡 𝑧 ) )
27 6 26 sylanb ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑢 ( ( 𝑢 𝑧 ∧ Tr 𝑢 ) → 𝑢 𝑧 ) ) → ( 𝑧𝑡 → ¬ 𝑡 𝑧 ) )
28 5 27 syldan ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( 𝑧𝑡 → ¬ 𝑡 𝑧 ) )
29 4 28 syl5 ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ( 𝑡𝑧 → ¬ 𝑡 𝑧 ) )
30 29 ralrimiv ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ∀ 𝑡𝑧 ¬ 𝑡 𝑧 )
31 eleq2 ( 𝑤 = 𝑧 → ( 𝑡𝑤𝑡 𝑧 ) )
32 31 notbid ( 𝑤 = 𝑧 → ( ¬ 𝑡𝑤 ↔ ¬ 𝑡 𝑧 ) )
33 32 ralbidv ( 𝑤 = 𝑧 → ( ∀ 𝑡𝑧 ¬ 𝑡𝑤 ↔ ∀ 𝑡𝑧 ¬ 𝑡 𝑧 ) )
34 33 rspcev ( ( 𝑧𝑧 ∧ ∀ 𝑡𝑧 ¬ 𝑡 𝑧 ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 )
35 3 30 34 syl2anc ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 )
36 35 expcom ( ∀ 𝑥𝑧𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( 𝑧 ≠ ∅ → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
37 1 36 syl6com ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( 𝑧𝐴 → ( 𝑧 ≠ ∅ → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) ) )
38 37 impd ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
39 38 alrimiv ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
40 df-fr ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ) )
41 epel ( 𝑡 E 𝑤𝑡𝑤 )
42 41 notbii ( ¬ 𝑡 E 𝑤 ↔ ¬ 𝑡𝑤 )
43 42 ralbii ( ∀ 𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∀ 𝑡𝑧 ¬ 𝑡𝑤 )
44 43 rexbii ( ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 )
45 44 imbi2i ( ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ) ↔ ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
46 45 albii ( ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ) ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
47 40 46 bitri ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤 ) )
48 39 47 sylibr ( ∀ 𝑥𝐴𝑦 ( ( 𝑦𝑥 ∧ Tr 𝑦 ) → 𝑦𝑥 ) → E Fr 𝐴 )