| Step | Hyp | Ref | Expression | 
						
							| 1 |  | untelirr | ⊢ ( ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧  →  ¬  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) | 
						
							| 2 |  | eluni2 | ⊢ ( 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ↔  ∃ 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } 𝑧  ∈  𝑥 ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 |  | sseq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ⊆  𝐴  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 5 |  | treq | ⊢ ( 𝑤  =  𝑥  →  ( Tr  𝑤  ↔  Tr  𝑥 ) ) | 
						
							| 6 |  | raleq | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡  ↔  ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡 ) ) | 
						
							| 7 | 4 5 6 | 3anbi123d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 )  ↔  ( 𝑥  ⊆  𝐴  ∧  Tr  𝑥  ∧  ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡 ) ) ) | 
						
							| 8 | 3 7 | elab | ⊢ ( 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ↔  ( 𝑥  ⊆  𝐴  ∧  Tr  𝑥  ∧  ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡 ) ) | 
						
							| 9 |  | elequ1 | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∈  𝑡  ↔  𝑧  ∈  𝑡 ) ) | 
						
							| 10 |  | elequ2 | ⊢ ( 𝑡  =  𝑧  →  ( 𝑧  ∈  𝑡  ↔  𝑧  ∈  𝑧 ) ) | 
						
							| 11 | 9 10 | bitrd | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∈  𝑡  ↔  𝑧  ∈  𝑧 ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( 𝑡  =  𝑧  →  ( ¬  𝑡  ∈  𝑡  ↔  ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡  ↔  ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧 ) | 
						
							| 14 | 13 | biimpi | ⊢ ( ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧 ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  Tr  𝑥  ∧  ∀ 𝑡  ∈  𝑥 ¬  𝑡  ∈  𝑡 )  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧 ) | 
						
							| 16 | 8 15 | sylbi | ⊢ ( 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧 ) | 
						
							| 17 |  | rsp | ⊢ ( ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧  →  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑧 ) | 
						
							| 20 | 2 19 | sylbi | ⊢ ( 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ¬  𝑧  ∈  𝑧 ) | 
						
							| 21 | 1 20 | mprg | ⊢ ¬  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 22 |  | dfon2lem2 | ⊢ ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴 | 
						
							| 23 |  | dfpss2 | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ↔  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  ¬  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴 ) ) | 
						
							| 24 |  | dfon2lem1 | ⊢ Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 25 |  | ssexg | ⊢ ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  𝐴  ∈  𝑉 )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V ) | 
						
							| 26 | 22 25 | mpan | ⊢ ( 𝐴  ∈  𝑉  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V ) | 
						
							| 27 |  | psseq1 | ⊢ ( 𝑥  =  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( 𝑥  ⊊  𝐴  ↔  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴 ) ) | 
						
							| 28 |  | treq | ⊢ ( 𝑥  =  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( Tr  𝑥  ↔  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 29 | 27 28 | anbi12d | ⊢ ( 𝑥  =  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  ↔  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) ) | 
						
							| 30 |  | eleq1 | ⊢ ( 𝑥  =  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( 𝑥  ∈  𝐴  ↔  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴 ) ) | 
						
							| 31 | 29 30 | imbi12d | ⊢ ( 𝑥  =  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ↔  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴 ) ) ) | 
						
							| 32 | 31 | spcgv | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V  →  ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴 ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴 ) ) | 
						
							| 34 | 26 33 | sylan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴 ) ) | 
						
							| 35 |  | snssi | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } }  ⊆  𝐴 ) | 
						
							| 36 |  | unss | ⊢ ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } }  ⊆  𝐴 )  ↔  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∪  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } } )  ⊆  𝐴 ) | 
						
							| 37 |  | df-suc | ⊢ suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∪  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } } ) | 
						
							| 38 | 37 | sseq1i | ⊢ ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ↔  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∪  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } } )  ⊆  𝐴 ) | 
						
							| 39 | 36 38 | sylbb2 | ⊢ ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  { ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } }  ⊆  𝐴 )  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴 ) | 
						
							| 40 | 22 35 39 | sylancr | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴 ) | 
						
							| 41 |  | suctr | ⊢ ( Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) | 
						
							| 42 | 24 41 | ax-mp | ⊢ Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 43 |  | untuni | ⊢ ( ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧  ↔  ∀ 𝑥  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ∀ 𝑧  ∈  𝑥 ¬  𝑧  ∈  𝑧 ) | 
						
							| 44 | 43 16 | mprgbir | ⊢ ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧 | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑡 𝑤  ⊆  𝐴 | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑡 Tr  𝑤 | 
						
							| 47 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 | 
						
							| 48 | 45 46 47 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) | 
						
							| 49 | 48 | nfab | ⊢ Ⅎ 𝑡 { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 50 | 49 | nfuni | ⊢ Ⅎ 𝑡 ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 51 | 50 | untsucf | ⊢ ( ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧  →  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 ) | 
						
							| 52 | 44 51 | ax-mp | ⊢ ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 | 
						
							| 53 |  | sseq1 | ⊢ ( 𝑧  =  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( 𝑧  ⊆  𝐴  ↔  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴 ) ) | 
						
							| 54 |  | treq | ⊢ ( 𝑧  =  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( Tr  𝑧  ↔  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑡 𝑧 | 
						
							| 56 | 50 | nfsuc | ⊢ Ⅎ 𝑡 suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 57 | 55 56 | raleqf | ⊢ ( 𝑧  =  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( ∀ 𝑡  ∈  𝑧 ¬  𝑡  ∈  𝑡  ↔  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 ) ) | 
						
							| 58 | 53 54 57 | 3anbi123d | ⊢ ( 𝑧  =  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ( ( 𝑧  ⊆  𝐴  ∧  Tr  𝑧  ∧  ∀ 𝑡  ∈  𝑧 ¬  𝑡  ∈  𝑡 )  ↔  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 ) ) ) | 
						
							| 59 |  | sseq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ⊆  𝐴  ↔  𝑧  ⊆  𝐴 ) ) | 
						
							| 60 |  | treq | ⊢ ( 𝑤  =  𝑧  →  ( Tr  𝑤  ↔  Tr  𝑧 ) ) | 
						
							| 61 |  | raleq | ⊢ ( 𝑤  =  𝑧  →  ( ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡  ↔  ∀ 𝑡  ∈  𝑧 ¬  𝑡  ∈  𝑡 ) ) | 
						
							| 62 | 59 60 61 | 3anbi123d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 )  ↔  ( 𝑧  ⊆  𝐴  ∧  Tr  𝑧  ∧  ∀ 𝑡  ∈  𝑧 ¬  𝑡  ∈  𝑡 ) ) ) | 
						
							| 63 | 62 | cbvabv | ⊢ { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  { 𝑧  ∣  ( 𝑧  ⊆  𝐴  ∧  Tr  𝑧  ∧  ∀ 𝑡  ∈  𝑧 ¬  𝑡  ∈  𝑡 ) } | 
						
							| 64 | 58 63 | elab2g | ⊢ ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V  →  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ↔  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 ) ) ) | 
						
							| 65 | 64 | biimprd | ⊢ ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V  →  ( ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 )  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 66 |  | sucexg | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  V ) | 
						
							| 67 | 65 66 | syl11 | ⊢ ( ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  Tr  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑡  ∈  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑡  ∈  𝑡 )  →  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 68 | 42 52 67 | mp3an23 | ⊢ ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  →  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 69 | 68 | com12 | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 70 |  | elssuni | ⊢ ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) | 
						
							| 71 |  | sucssel | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 72 | 70 71 | syl5 | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 73 | 69 72 | syld | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  ( suc  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 74 | 40 73 | mpd | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  𝐴  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) | 
						
							| 75 | 34 74 | syl6 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  ∧  Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 76 | 24 75 | mpan2i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊊  𝐴  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 77 | 23 76 | biimtrrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ⊆  𝐴  ∧  ¬  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴 )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 78 | 22 77 | mpani | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( ¬  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ) ) | 
						
							| 79 | 21 78 | mt3i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴 ) | 
						
							| 80 | 24 44 | pm3.2i | ⊢ ( Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧 ) | 
						
							| 81 |  | treq | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴  →  ( Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ↔  Tr  𝐴 ) ) | 
						
							| 82 |  | raleq | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴  →  ( ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧  ↔  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 83 | 81 82 | anbi12d | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴  →  ( ( Tr  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  ∧  ∀ 𝑧  ∈  ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) } ¬  𝑧  ∈  𝑧 )  ↔  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) ) | 
						
							| 84 | 80 83 | mpbii | ⊢ ( ∪  { 𝑤  ∣  ( 𝑤  ⊆  𝐴  ∧  Tr  𝑤  ∧  ∀ 𝑡  ∈  𝑤 ¬  𝑡  ∈  𝑡 ) }  =  𝐴  →  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 85 | 79 84 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 ) )  →  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 86 | 85 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) ) |