Metamath Proof Explorer


Theorem dfon2lem3

Description: Lemma for dfon2 . All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Assertion dfon2lem3 ( 𝐴𝑉 → ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 untelirr ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 → ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } )
2 eluni2 ( 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } 𝑧𝑥 )
3 vex 𝑥 ∈ V
4 sseq1 ( 𝑤 = 𝑥 → ( 𝑤𝐴𝑥𝐴 ) )
5 treq ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) )
6 raleq ( 𝑤 = 𝑥 → ( ∀ 𝑡𝑤 ¬ 𝑡𝑡 ↔ ∀ 𝑡𝑥 ¬ 𝑡𝑡 ) )
7 4 5 6 3anbi123d ( 𝑤 = 𝑥 → ( ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥 ¬ 𝑡𝑡 ) ) )
8 3 7 elab ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ↔ ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥 ¬ 𝑡𝑡 ) )
9 elequ1 ( 𝑡 = 𝑧 → ( 𝑡𝑡𝑧𝑡 ) )
10 elequ2 ( 𝑡 = 𝑧 → ( 𝑧𝑡𝑧𝑧 ) )
11 9 10 bitrd ( 𝑡 = 𝑧 → ( 𝑡𝑡𝑧𝑧 ) )
12 11 notbid ( 𝑡 = 𝑧 → ( ¬ 𝑡𝑡 ↔ ¬ 𝑧𝑧 ) )
13 12 cbvralvw ( ∀ 𝑡𝑥 ¬ 𝑡𝑡 ↔ ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
14 13 biimpi ( ∀ 𝑡𝑥 ¬ 𝑡𝑡 → ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
15 14 3ad2ant3 ( ( 𝑥𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡𝑥 ¬ 𝑡𝑡 ) → ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
16 8 15 sylbi ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
17 rsp ( ∀ 𝑧𝑥 ¬ 𝑧𝑧 → ( 𝑧𝑥 → ¬ 𝑧𝑧 ) )
18 16 17 syl ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( 𝑧𝑥 → ¬ 𝑧𝑧 ) )
19 18 rexlimiv ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } 𝑧𝑥 → ¬ 𝑧𝑧 )
20 2 19 sylbi ( 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ¬ 𝑧𝑧 )
21 1 20 mprg ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
22 dfon2lem2 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴
23 dfpss2 ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 ) )
24 dfon2lem1 Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
25 ssexg ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴𝐴𝑉 ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V )
26 22 25 mpan ( 𝐴𝑉 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V )
27 psseq1 ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( 𝑥𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ) )
28 treq ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( Tr 𝑥 ↔ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
29 27 28 anbi12d ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( ( 𝑥𝐴 ∧ Tr 𝑥 ) ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) ) )
30 eleq1 ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( 𝑥𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 ) )
31 29 30 imbi12d ( 𝑥 = { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ↔ ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 ) ) )
32 31 spcgv ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V → ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 ) ) )
33 32 imp ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 ) )
34 26 33 sylan ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 ) )
35 snssi ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } ⊆ 𝐴 )
36 unss ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } ⊆ 𝐴 ) ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } ) ⊆ 𝐴 )
37 df-suc suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } )
38 37 sseq1i ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ↔ ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∪ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } ) ⊆ 𝐴 )
39 36 38 sylbb2 ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ { { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } } ⊆ 𝐴 ) → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 )
40 22 35 39 sylancr ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 )
41 suctr ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } )
42 24 41 ax-mp Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
43 untuni ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∀ 𝑧𝑥 ¬ 𝑧𝑧 )
44 43 16 mprgbir 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧
45 nfv 𝑡 𝑤𝐴
46 nfv 𝑡 Tr 𝑤
47 nfra1 𝑡𝑡𝑤 ¬ 𝑡𝑡
48 45 46 47 nf3an 𝑡 ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 )
49 48 nfab 𝑡 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
50 49 nfuni 𝑡 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
51 50 untsucf ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 → ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 )
52 44 51 ax-mp 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡
53 sseq1 ( 𝑧 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( 𝑧𝐴 ↔ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ) )
54 treq ( 𝑧 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( Tr 𝑧 ↔ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
55 nfcv 𝑡 𝑧
56 50 nfsuc 𝑡 suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) }
57 55 56 raleqf ( 𝑧 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( ∀ 𝑡𝑧 ¬ 𝑡𝑡 ↔ ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 ) )
58 53 54 57 3anbi123d ( 𝑧 = suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → ( ( 𝑧𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡𝑧 ¬ 𝑡𝑡 ) ↔ ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 ) ) )
59 sseq1 ( 𝑤 = 𝑧 → ( 𝑤𝐴𝑧𝐴 ) )
60 treq ( 𝑤 = 𝑧 → ( Tr 𝑤 ↔ Tr 𝑧 ) )
61 raleq ( 𝑤 = 𝑧 → ( ∀ 𝑡𝑤 ¬ 𝑡𝑡 ↔ ∀ 𝑡𝑧 ¬ 𝑡𝑡 ) )
62 59 60 61 3anbi123d ( 𝑤 = 𝑧 → ( ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) ↔ ( 𝑧𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡𝑧 ¬ 𝑡𝑡 ) ) )
63 62 cbvabv { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = { 𝑧 ∣ ( 𝑧𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡𝑧 ¬ 𝑡𝑡 ) }
64 58 63 elab2g ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ↔ ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 ) ) )
65 64 biimprd ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V → ( ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 ) → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
66 sucexg ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ V )
67 65 66 syl11 ( ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ Tr suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑡 ∈ suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑡𝑡 ) → ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
68 42 52 67 mp3an23 ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 → ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
69 68 com12 ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
70 elssuni ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } )
71 sucssel ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
72 70 71 syl5 ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
73 69 72 syld ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 → ( suc { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
74 40 73 mpd ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } )
75 34 74 syl6 ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 ∧ Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
76 24 75 mpan2i ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊊ 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
77 23 76 syl5bir ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ⊆ 𝐴 ∧ ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
78 22 77 mpani ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( ¬ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ) )
79 21 78 mt3i ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 )
80 24 44 pm3.2i ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 )
81 treq ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 → ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ↔ Tr 𝐴 ) )
82 raleq ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 → ( ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 ↔ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) )
83 81 82 anbi12d ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 → ( ( Tr { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ∧ ∀ 𝑧 { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } ¬ 𝑧𝑧 ) ↔ ( Tr 𝐴 ∧ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) ) )
84 80 83 mpbii ( { 𝑤 ∣ ( 𝑤𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡𝑤 ¬ 𝑡𝑡 ) } = 𝐴 → ( Tr 𝐴 ∧ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) )
85 79 84 syl ( ( 𝐴𝑉 ∧ ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) ) → ( Tr 𝐴 ∧ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) )
86 85 ex ( 𝐴𝑉 → ( ∀ 𝑥 ( ( 𝑥𝐴 ∧ Tr 𝑥 ) → 𝑥𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧𝐴 ¬ 𝑧𝑧 ) ) )