| Step |
Hyp |
Ref |
Expression |
| 1 |
|
untelirr |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) |
| 2 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } 𝑧 ∈ 𝑥 ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
| 5 |
|
treq |
⊢ ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) ) |
| 6 |
|
raleq |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) |
| 7 |
4 5 6
|
3anbi123d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 8 |
3 7
|
elab |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) |
| 9 |
|
elequ1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡 ) ) |
| 10 |
|
elequ2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
| 11 |
9 10
|
bitrd |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑡 = 𝑧 → ( ¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧 ) ) |
| 13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 14 |
13
|
biimpi |
⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 16 |
8 15
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 17 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) ) |
| 19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) |
| 20 |
2 19
|
sylbi |
⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ¬ 𝑧 ∈ 𝑧 ) |
| 21 |
1 20
|
mprg |
⊢ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 22 |
|
dfon2lem2 |
⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 |
| 23 |
|
dfpss2 |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) ) |
| 24 |
|
dfon2lem1 |
⊢ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 25 |
|
ssexg |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) |
| 26 |
22 25
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) |
| 27 |
|
psseq1 |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑥 ⊊ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ) ) |
| 28 |
|
treq |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( Tr 𝑥 ↔ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 29 |
27 28
|
anbi12d |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) ) |
| 30 |
|
eleq1 |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑥 ∈ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) |
| 31 |
29 30
|
imbi12d |
⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) ) |
| 32 |
31
|
spcgv |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) |
| 34 |
26 33
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) |
| 35 |
|
snssi |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) |
| 36 |
|
unss |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) ⊆ 𝐴 ) |
| 37 |
|
df-suc |
⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) |
| 38 |
37
|
sseq1i |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) ⊆ 𝐴 ) |
| 39 |
36 38
|
sylbb2 |
⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) |
| 40 |
22 35 39
|
sylancr |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) |
| 41 |
|
suctr |
⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) |
| 42 |
24 41
|
ax-mp |
⊢ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 43 |
|
untuni |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 44 |
43 16
|
mprgbir |
⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 |
| 45 |
|
nfv |
⊢ Ⅎ 𝑡 𝑤 ⊆ 𝐴 |
| 46 |
|
nfv |
⊢ Ⅎ 𝑡 Tr 𝑤 |
| 47 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 |
| 48 |
45 46 47
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) |
| 49 |
48
|
nfab |
⊢ Ⅎ 𝑡 { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 50 |
49
|
nfuni |
⊢ Ⅎ 𝑡 ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 51 |
50
|
untsucf |
⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 → ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) |
| 52 |
44 51
|
ax-mp |
⊢ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 |
| 53 |
|
sseq1 |
⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑧 ⊆ 𝐴 ↔ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) ) |
| 54 |
|
treq |
⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( Tr 𝑧 ↔ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑧 |
| 56 |
50
|
nfsuc |
⊢ Ⅎ 𝑡 suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 57 |
55 56
|
raleqf |
⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) |
| 58 |
53 54 57
|
3anbi123d |
⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 59 |
|
sseq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
| 60 |
|
treq |
⊢ ( 𝑤 = 𝑧 → ( Tr 𝑤 ↔ Tr 𝑧 ) ) |
| 61 |
|
raleq |
⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ) |
| 62 |
59 60 61
|
3anbi123d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) ↔ ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 63 |
62
|
cbvabv |
⊢ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = { 𝑧 ∣ ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) } |
| 64 |
58 63
|
elab2g |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 65 |
64
|
biimprd |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 66 |
|
sucexg |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) |
| 67 |
65 66
|
syl11 |
⊢ ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 68 |
42 52 67
|
mp3an23 |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 69 |
68
|
com12 |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 70 |
|
elssuni |
⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) |
| 71 |
|
sucssel |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 72 |
70 71
|
syl5 |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 73 |
69 72
|
syld |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 74 |
40 73
|
mpd |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) |
| 75 |
34 74
|
syl6 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 76 |
24 75
|
mpan2i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 77 |
23 76
|
biimtrrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 78 |
22 77
|
mpani |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 79 |
21 78
|
mt3i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) |
| 80 |
24 44
|
pm3.2i |
⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ) |
| 81 |
|
treq |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ Tr 𝐴 ) ) |
| 82 |
|
raleq |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 83 |
81 82
|
anbi12d |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ) ↔ ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |
| 84 |
80 83
|
mpbii |
⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 85 |
79 84
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 86 |
85
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |