| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfon2lem4.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | dfon2lem4.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 4 | 3 | sseli | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) | 
						
							| 5 |  | dfon2lem3 | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( Tr  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧 ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑧  ∈  𝑧  ↔  ( 𝐴  ∩  𝐵 )  ∈  𝑧 ) ) | 
						
							| 9 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝐴  ∩  𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝑧  ↔  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 10 | 8 9 | bitrd | ⊢ ( 𝑧  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑧  ∈  𝑧  ↔  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( 𝑧  =  ( 𝐴  ∩  𝐵 )  →  ( ¬  𝑧  ∈  𝑧  ↔  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 12 | 11 | rspccv | ⊢ ( ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑧  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  →  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 13 | 7 12 | syl | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  →  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  →  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 15 | 4 14 | syl5 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 )  →  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 16 | 15 | pm2.01d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ¬  ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 17 |  | elin | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 18 | 16 17 | sylnib | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ¬  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 19 | 6 | simpld | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  Tr  𝐴 ) | 
						
							| 20 |  | dfon2lem3 | ⊢ ( 𝐵  ∈  V  →  ( ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 )  →  ( Tr  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ¬  𝑧  ∈  𝑧 ) ) ) | 
						
							| 21 | 2 20 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 )  →  ( Tr  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ¬  𝑧  ∈  𝑧 ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 )  →  Tr  𝐵 ) | 
						
							| 23 |  | trin | ⊢ ( ( Tr  𝐴  ∧  Tr  𝐵 )  →  Tr  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 24 | 19 22 23 | syl2an | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  Tr  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 25 | 1 | inex1 | ⊢ ( 𝐴  ∩  𝐵 )  ∈  V | 
						
							| 26 |  | psseq1 | ⊢ ( 𝑥  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑥  ⊊  𝐴  ↔  ( 𝐴  ∩  𝐵 )  ⊊  𝐴 ) ) | 
						
							| 27 |  | treq | ⊢ ( 𝑥  =  ( 𝐴  ∩  𝐵 )  →  ( Tr  𝑥  ↔  Tr  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 28 | 26 27 | anbi12d | ⊢ ( 𝑥  =  ( 𝐴  ∩  𝐵 )  →  ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  ↔  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  Tr  ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑥  ∈  𝐴  ↔  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) ) | 
						
							| 30 | 28 29 | imbi12d | ⊢ ( 𝑥  =  ( 𝐴  ∩  𝐵 )  →  ( ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ↔  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) ) ) | 
						
							| 31 | 25 30 | spcv | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) ) | 
						
							| 33 | 24 32 | mpan2d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  →  ( 𝐴  ∩  𝐵 )  ∈  𝐴 ) ) | 
						
							| 34 |  | psseq1 | ⊢ ( 𝑦  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑦  ⊊  𝐵  ↔  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 ) ) | 
						
							| 35 |  | treq | ⊢ ( 𝑦  =  ( 𝐴  ∩  𝐵 )  →  ( Tr  𝑦  ↔  Tr  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 36 | 34 35 | anbi12d | ⊢ ( 𝑦  =  ( 𝐴  ∩  𝐵 )  →  ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  ↔  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∧  Tr  ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝐴  ∩  𝐵 )  →  ( 𝑦  ∈  𝐵  ↔  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 38 | 36 37 | imbi12d | ⊢ ( 𝑦  =  ( 𝐴  ∩  𝐵 )  →  ( ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 )  ↔  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) ) | 
						
							| 39 | 25 38 | spcv | ⊢ ( ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∧  Tr  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 41 | 24 40 | mpan2d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  →  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) | 
						
							| 42 | 33 41 | anim12d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝐵 ) ) ) | 
						
							| 43 | 18 42 | mtod | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ¬  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 ) ) | 
						
							| 44 |  | ianor | ⊢ ( ¬  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∧  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 )  ↔  ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 ) ) | 
						
							| 45 | 43 44 | sylib | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 ) ) | 
						
							| 46 |  | sspss | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐴  ↔  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐴 ) ) | 
						
							| 47 | 3 46 | mpbi | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 48 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 49 |  | sspss | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐵  ↔  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 50 | 48 49 | mpbi | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) | 
						
							| 51 |  | orel1 | ⊢ ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐴 )  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) ) | 
						
							| 52 |  | orc | ⊢ ( ( 𝐴  ∩  𝐵 )  =  𝐴  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 53 | 51 52 | syl6 | ⊢ ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐴 )  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) ) | 
						
							| 54 |  | orel1 | ⊢ ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 55 |  | olc | ⊢ ( ( 𝐴  ∩  𝐵 )  =  𝐵  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 56 | 54 55 | syl6 | ⊢ ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵  →  ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) ) | 
						
							| 57 | 53 56 | jaoa | ⊢ ( ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 )  →  ( ( ( ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊊  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) ) | 
						
							| 58 | 47 50 57 | mp2ani | ⊢ ( ( ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐴  ∨  ¬  ( 𝐴  ∩  𝐵 )  ⊊  𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 59 | 45 58 | syl | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 60 |  | dfss2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 61 |  | sseqin2 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∩  𝐵 )  =  𝐵 ) | 
						
							| 62 | 60 61 | orbi12i | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  ↔  ( ( 𝐴  ∩  𝐵 )  =  𝐴  ∨  ( 𝐴  ∩  𝐵 )  =  𝐵 ) ) | 
						
							| 63 | 59 62 | sylibr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥  ⊊  𝐴  ∧  Tr  𝑥 )  →  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦 ( ( 𝑦  ⊊  𝐵  ∧  Tr  𝑦 )  →  𝑦  ∈  𝐵 ) )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) |