Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|
2 |
|
dfon2lem3 |
|
3 |
1 2
|
ax-mp |
|
4 |
3
|
simpld |
|
5 |
4
|
ralimi |
|
6 |
|
trint |
|
7 |
5 6
|
syl |
|
8 |
7
|
adantl |
|
9 |
1
|
dfon2lem7 |
|
10 |
9
|
alrimiv |
|
11 |
10
|
ralimi |
|
12 |
|
df-ral |
|
13 |
|
19.21v |
|
14 |
13
|
albii |
|
15 |
12 14
|
bitr4i |
|
16 |
|
impexp |
|
17 |
16
|
2albii |
|
18 |
|
eluni2 |
|
19 |
18
|
biimpi |
|
20 |
19
|
imim1i |
|
21 |
20
|
alimi |
|
22 |
|
alcom |
|
23 |
|
19.23v |
|
24 |
|
df-rex |
|
25 |
24
|
imbi1i |
|
26 |
23 25
|
bitr4i |
|
27 |
26
|
albii |
|
28 |
22 27
|
bitri |
|
29 |
|
df-ral |
|
30 |
21 28 29
|
3imtr4i |
|
31 |
17 30
|
sylbir |
|
32 |
15 31
|
sylbi |
|
33 |
11 32
|
syl |
|
34 |
33
|
adantl |
|
35 |
|
intssuni |
|
36 |
|
ssralv |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
34 38
|
mpd |
|
40 |
|
dfon2lem6 |
|
41 |
|
intex |
|
42 |
|
dfon2lem3 |
|
43 |
41 42
|
sylbi |
|
44 |
43
|
imp |
|
45 |
44
|
simprd |
|
46 |
|
untelirr |
|
47 |
45 46
|
syl |
|
48 |
47
|
adantlr |
|
49 |
|
risset |
|
50 |
49
|
notbii |
|
51 |
|
ralnex |
|
52 |
50 51
|
bitr4i |
|
53 |
|
eqcom |
|
54 |
53
|
notbii |
|
55 |
44
|
simpld |
|
56 |
55
|
adantlr |
|
57 |
|
psseq2 |
|
58 |
57
|
anbi1d |
|
59 |
|
elequ2 |
|
60 |
58 59
|
imbi12d |
|
61 |
60
|
albidv |
|
62 |
61
|
rspccv |
|
63 |
62
|
adantl |
|
64 |
|
intss1 |
|
65 |
|
dfpss2 |
|
66 |
|
psseq1 |
|
67 |
|
treq |
|
68 |
66 67
|
anbi12d |
|
69 |
|
eleq1 |
|
70 |
68 69
|
imbi12d |
|
71 |
70
|
spcgv |
|
72 |
41 71
|
sylbi |
|
73 |
72
|
imp |
|
74 |
73
|
expd |
|
75 |
65 74
|
syl5bir |
|
76 |
75
|
exp4b |
|
77 |
76
|
com45 |
|
78 |
77
|
com23 |
|
79 |
64 78
|
syl5 |
|
80 |
79
|
adantr |
|
81 |
63 80
|
mpdd |
|
82 |
81
|
adantr |
|
83 |
56 82
|
mpid |
|
84 |
54 83
|
syl7bi |
|
85 |
84
|
ralrimiv |
|
86 |
|
ralim |
|
87 |
85 86
|
syl |
|
88 |
52 87
|
syl5bi |
|
89 |
|
elintg |
|
90 |
41 89
|
sylbi |
|
91 |
90
|
ad2antrr |
|
92 |
88 91
|
sylibrd |
|
93 |
48 92
|
mt3d |
|
94 |
93
|
ex |
|
95 |
94
|
ancld |
|
96 |
40 95
|
syl5 |
|
97 |
8 39 96
|
mp2and |
|