Metamath Proof Explorer


Theorem dford5reg

Description: Given ax-reg , an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011)

Ref Expression
Assertion dford5reg
|- ( Ord A <-> ( Tr A /\ _E Or A ) )

Proof

Step Hyp Ref Expression
1 df-ord
 |-  ( Ord A <-> ( Tr A /\ _E We A ) )
2 zfregfr
 |-  _E Fr A
3 df-we
 |-  ( _E We A <-> ( _E Fr A /\ _E Or A ) )
4 2 3 mpbiran
 |-  ( _E We A <-> _E Or A )
5 4 anbi2i
 |-  ( ( Tr A /\ _E We A ) <-> ( Tr A /\ _E Or A ) )
6 1 5 bitri
 |-  ( Ord A <-> ( Tr A /\ _E Or A ) )