Description: Given ax-reg , an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dford5reg | |- ( Ord A <-> ( Tr A /\ _E Or A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
2 | zfregfr | |- _E Fr A |
|
3 | df-we | |- ( _E We A <-> ( _E Fr A /\ _E Or A ) ) |
|
4 | 2 3 | mpbiran | |- ( _E We A <-> _E Or A ) |
5 | 4 | anbi2i | |- ( ( Tr A /\ _E We A ) <-> ( Tr A /\ _E Or A ) ) |
6 | 1 5 | bitri | |- ( Ord A <-> ( Tr A /\ _E Or A ) ) |