Metamath Proof Explorer


Theorem dford5reg

Description: Given ax-reg , an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011)

Ref Expression
Assertion dford5reg Ord A Tr A E Or A

Proof

Step Hyp Ref Expression
1 df-ord Ord A Tr A E We A
2 zfregfr E Fr A
3 df-we E We A E Fr A E Or A
4 2 3 mpbiran E We A E Or A
5 4 anbi2i Tr A E We A Tr A E Or A
6 1 5 bitri Ord A Tr A E Or A