Metamath Proof Explorer


Theorem dford5reg

Description: Given ax-reg , an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011)

Ref Expression
Assertion dford5reg OrdATrAEOrA

Proof

Step Hyp Ref Expression
1 df-ord OrdATrAEWeA
2 zfregfr EFrA
3 df-we EWeAEFrAEOrA
4 2 3 mpbiran EWeAEOrA
5 4 anbi2i TrAEWeATrAEOrA
6 1 5 bitri OrdATrAEOrA