Metamath Proof Explorer


Theorem dford5reg

Description: Given ax-reg , an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011)

Ref Expression
Assertion dford5reg ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E Or 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-ord ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) )
2 zfregfr E Fr 𝐴
3 df-we ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴 ) )
4 2 3 mpbiran ( E We 𝐴 ↔ E Or 𝐴 )
5 4 anbi2i ( ( Tr 𝐴 ∧ E We 𝐴 ) ↔ ( Tr 𝐴 ∧ E Or 𝐴 ) )
6 1 5 bitri ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E Or 𝐴 ) )