| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' dom F |
| 2 |
|
dmtpos |
|- ( Rel dom F -> dom tpos F = `' dom F ) |
| 3 |
2
|
releqd |
|- ( Rel dom F -> ( Rel dom tpos F <-> Rel `' dom F ) ) |
| 4 |
1 3
|
mpbiri |
|- ( Rel dom F -> Rel dom tpos F ) |
| 5 |
|
reltpos |
|- Rel tpos F |
| 6 |
4 5
|
jctil |
|- ( Rel dom F -> ( Rel tpos F /\ Rel dom tpos F ) ) |
| 7 |
|
relrelss |
|- ( ( Rel tpos F /\ Rel dom tpos F ) <-> tpos F C_ ( ( _V X. _V ) X. _V ) ) |
| 8 |
6 7
|
sylib |
|- ( Rel dom F -> tpos F C_ ( ( _V X. _V ) X. _V ) ) |
| 9 |
8
|
sseld |
|- ( Rel dom F -> ( w e. tpos F -> w e. ( ( _V X. _V ) X. _V ) ) ) |
| 10 |
|
elvvv |
|- ( w e. ( ( _V X. _V ) X. _V ) <-> E. x E. y E. z w = <. <. x , y >. , z >. ) |
| 11 |
9 10
|
imbitrdi |
|- ( Rel dom F -> ( w e. tpos F -> E. x E. y E. z w = <. <. x , y >. , z >. ) ) |
| 12 |
11
|
pm4.71rd |
|- ( Rel dom F -> ( w e. tpos F <-> ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) ) ) |
| 13 |
|
19.41vvv |
|- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) ) |
| 14 |
|
eleq1 |
|- ( w = <. <. x , y >. , z >. -> ( w e. tpos F <-> <. <. x , y >. , z >. e. tpos F ) ) |
| 15 |
|
df-br |
|- ( <. x , y >. tpos F z <-> <. <. x , y >. , z >. e. tpos F ) |
| 16 |
|
brtpos |
|- ( z e. _V -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) |
| 17 |
16
|
elv |
|- ( <. x , y >. tpos F z <-> <. y , x >. F z ) |
| 18 |
15 17
|
bitr3i |
|- ( <. <. x , y >. , z >. e. tpos F <-> <. y , x >. F z ) |
| 19 |
14 18
|
bitrdi |
|- ( w = <. <. x , y >. , z >. -> ( w e. tpos F <-> <. y , x >. F z ) ) |
| 20 |
19
|
pm5.32i |
|- ( ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 21 |
20
|
3exbii |
|- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 22 |
13 21
|
bitr3i |
|- ( ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 23 |
12 22
|
bitrdi |
|- ( Rel dom F -> ( w e. tpos F <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) ) |
| 24 |
23
|
eqabdv |
|- ( Rel dom F -> tpos F = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) } ) |
| 25 |
|
df-oprab |
|- { <. <. x , y >. , z >. | <. y , x >. F z } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) } |
| 26 |
24 25
|
eqtr4di |
|- ( Rel dom F -> tpos F = { <. <. x , y >. , z >. | <. y , x >. F z } ) |