| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag1.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
diag1.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
diag1.a |
|- A = ( Base ` C ) |
| 5 |
|
diag1.x |
|- ( ph -> X e. A ) |
| 6 |
|
diag1.k |
|- K = ( ( 1st ` L ) ` X ) |
| 7 |
|
diag1.b |
|- B = ( Base ` D ) |
| 8 |
|
diag1.j |
|- J = ( Hom ` D ) |
| 9 |
|
diag1.i |
|- .1. = ( Id ` C ) |
| 10 |
|
relfunc |
|- Rel ( D Func C ) |
| 11 |
1 2 3 4 5 6
|
diag1cl |
|- ( ph -> K e. ( D Func C ) ) |
| 12 |
|
1st2nd |
|- ( ( Rel ( D Func C ) /\ K e. ( D Func C ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 13 |
10 11 12
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 14 |
|
1st2ndbr |
|- ( ( Rel ( D Func C ) /\ K e. ( D Func C ) ) -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 15 |
10 11 14
|
sylancr |
|- ( ph -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 16 |
7 4 15
|
funcf1 |
|- ( ph -> ( 1st ` K ) : B --> A ) |
| 17 |
16
|
feqmptd |
|- ( ph -> ( 1st ` K ) = ( y e. B |-> ( ( 1st ` K ) ` y ) ) ) |
| 18 |
2
|
adantr |
|- ( ( ph /\ y e. B ) -> C e. Cat ) |
| 19 |
3
|
adantr |
|- ( ( ph /\ y e. B ) -> D e. Cat ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ y e. B ) -> X e. A ) |
| 21 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
| 22 |
1 18 19 4 20 6 7 21
|
diag11 |
|- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = X ) |
| 23 |
22
|
mpteq2dva |
|- ( ph -> ( y e. B |-> ( ( 1st ` K ) ` y ) ) = ( y e. B |-> X ) ) |
| 24 |
17 23
|
eqtrd |
|- ( ph -> ( 1st ` K ) = ( y e. B |-> X ) ) |
| 25 |
7 15
|
funcfn2 |
|- ( ph -> ( 2nd ` K ) Fn ( B X. B ) ) |
| 26 |
|
fnov |
|- ( ( 2nd ` K ) Fn ( B X. B ) <-> ( 2nd ` K ) = ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) ) |
| 27 |
25 26
|
sylib |
|- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) ) |
| 28 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 29 |
15
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ z e. B ) -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 30 |
|
simp2 |
|- ( ( ph /\ y e. B /\ z e. B ) -> y e. B ) |
| 31 |
|
simp3 |
|- ( ( ph /\ y e. B /\ z e. B ) -> z e. B ) |
| 32 |
7 8 28 29 30 31
|
funcf2 |
|- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) : ( y J z ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` C ) ( ( 1st ` K ) ` z ) ) ) |
| 33 |
32
|
feqmptd |
|- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) = ( f e. ( y J z ) |-> ( ( y ( 2nd ` K ) z ) ` f ) ) ) |
| 34 |
|
simpl1 |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> ph ) |
| 35 |
34 2
|
syl |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> C e. Cat ) |
| 36 |
34 3
|
syl |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> D e. Cat ) |
| 37 |
34 5
|
syl |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> X e. A ) |
| 38 |
30
|
adantr |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> y e. B ) |
| 39 |
31
|
adantr |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> z e. B ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> f e. ( y J z ) ) |
| 41 |
1 35 36 4 37 6 7 38 8 9 39 40
|
diag12 |
|- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> ( ( y ( 2nd ` K ) z ) ` f ) = ( .1. ` X ) ) |
| 42 |
41
|
mpteq2dva |
|- ( ( ph /\ y e. B /\ z e. B ) -> ( f e. ( y J z ) |-> ( ( y ( 2nd ` K ) z ) ` f ) ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 43 |
33 42
|
eqtrd |
|- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 44 |
43
|
mpoeq3dva |
|- ( ph -> ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) ) |
| 45 |
27 44
|
eqtrd |
|- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) ) |
| 46 |
24 45
|
opeq12d |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |
| 47 |
13 46
|
eqtrd |
|- ( ph -> K = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |