| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diag1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diag1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 5 |
|
diag1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
|
diag1.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 7 |
|
diag1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 8 |
|
diag1.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 9 |
|
diag1.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 10 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐶 ) |
| 11 |
1 2 3 4 5 6
|
diag1cl |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |
| 12 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 13 |
10 11 12
|
sylancr |
⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 14 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 15 |
10 11 14
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 16 |
7 4 15
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ) |
| 17 |
16
|
feqmptd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
| 18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 22 |
1 18 19 4 20 6 7 21
|
diag11 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = 𝑋 ) |
| 23 |
22
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 24 |
17 23
|
eqtrd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 25 |
7 15
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ) |
| 26 |
|
fnov |
⊢ ( ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) ) |
| 28 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 29 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 30 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 31 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 32 |
7 8 28 29 30 31
|
funcf2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) : ( 𝑦 𝐽 𝑧 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 33 |
32
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) ) ) |
| 34 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝜑 ) |
| 35 |
34 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐶 ∈ Cat ) |
| 36 |
34 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐷 ∈ Cat ) |
| 37 |
34 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑋 ∈ 𝐴 ) |
| 38 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑦 ∈ 𝐵 ) |
| 39 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑧 ∈ 𝐵 ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) |
| 41 |
1 35 36 4 37 6 7 38 8 9 39 40
|
diag12 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) = ( 1 ‘ 𝑋 ) ) |
| 42 |
41
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 43 |
33 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 44 |
43
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) ) |
| 45 |
27 44
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) ) |
| 46 |
24 45
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |
| 47 |
13 46
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |