Step |
Hyp |
Ref |
Expression |
1 |
|
diassdva.b |
|- B = ( Base ` K ) |
2 |
|
diassdva.l |
|- .<_ = ( le ` K ) |
3 |
|
diassdva.h |
|- H = ( LHyp ` K ) |
4 |
|
diassdva.i |
|- I = ( ( DIsoA ` K ) ` W ) |
5 |
|
diassdva.u |
|- U = ( ( DVecA ` K ) ` W ) |
6 |
|
diassdva.v |
|- V = ( Base ` U ) |
7 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
8 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
9 |
1 2 3 7 8 4
|
diaval |
|- ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } ) |
10 |
|
ssrab2 |
|- { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } C_ ( ( LTrn ` K ) ` W ) |
11 |
3 7 5 6
|
dvavbase |
|- ( ( K e. Y /\ W e. H ) -> V = ( ( LTrn ` K ) ` W ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> V = ( ( LTrn ` K ) ` W ) ) |
13 |
10 12
|
sseqtrrid |
|- ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } C_ V ) |
14 |
9 13
|
eqsstrd |
|- ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ V ) |