Metamath Proof Explorer


Theorem diassdvaN

Description: The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses diassdva.b
|- B = ( Base ` K )
diassdva.l
|- .<_ = ( le ` K )
diassdva.h
|- H = ( LHyp ` K )
diassdva.i
|- I = ( ( DIsoA ` K ) ` W )
diassdva.u
|- U = ( ( DVecA ` K ) ` W )
diassdva.v
|- V = ( Base ` U )
Assertion diassdvaN
|- ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ V )

Proof

Step Hyp Ref Expression
1 diassdva.b
 |-  B = ( Base ` K )
2 diassdva.l
 |-  .<_ = ( le ` K )
3 diassdva.h
 |-  H = ( LHyp ` K )
4 diassdva.i
 |-  I = ( ( DIsoA ` K ) ` W )
5 diassdva.u
 |-  U = ( ( DVecA ` K ) ` W )
6 diassdva.v
 |-  V = ( Base ` U )
7 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
8 eqid
 |-  ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W )
9 1 2 3 7 8 4 diaval
 |-  ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } )
10 ssrab2
 |-  { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } C_ ( ( LTrn ` K ) ` W )
11 3 7 5 6 dvavbase
 |-  ( ( K e. Y /\ W e. H ) -> V = ( ( LTrn ` K ) ` W ) )
12 11 adantr
 |-  ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> V = ( ( LTrn ` K ) ` W ) )
13 10 12 sseqtrrid
 |-  ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> { f e. ( ( LTrn ` K ) ` W ) | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } C_ V )
14 9 13 eqsstrd
 |-  ( ( ( K e. Y /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ V )