Step |
Hyp |
Ref |
Expression |
1 |
|
diassdva.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
diassdva.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
diassdva.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
diassdva.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
diassdva.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
diassdva.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 7 8 4
|
diaval |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ≤ 𝑋 } ) |
10 |
|
ssrab2 |
⊢ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ≤ 𝑋 } ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
3 7 5 6
|
dvavbase |
⊢ ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) → 𝑉 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑉 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
10 12
|
sseqtrrid |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ≤ 𝑋 } ⊆ 𝑉 ) |
14 |
9 13
|
eqsstrd |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ 𝑉 ) |