Metamath Proof Explorer


Theorem diassdvaN

Description: The partial isomorphism A maps to a set of vectors in partial vector space A. (Contributed by NM, 1-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses diassdva.b B = Base K
diassdva.l ˙ = K
diassdva.h H = LHyp K
diassdva.i I = DIsoA K W
diassdva.u U = DVecA K W
diassdva.v V = Base U
Assertion diassdvaN K Y W H X B X ˙ W I X V

Proof

Step Hyp Ref Expression
1 diassdva.b B = Base K
2 diassdva.l ˙ = K
3 diassdva.h H = LHyp K
4 diassdva.i I = DIsoA K W
5 diassdva.u U = DVecA K W
6 diassdva.v V = Base U
7 eqid LTrn K W = LTrn K W
8 eqid trL K W = trL K W
9 1 2 3 7 8 4 diaval K Y W H X B X ˙ W I X = f LTrn K W | trL K W f ˙ X
10 ssrab2 f LTrn K W | trL K W f ˙ X LTrn K W
11 3 7 5 6 dvavbase K Y W H V = LTrn K W
12 11 adantr K Y W H X B X ˙ W V = LTrn K W
13 10 12 sseqtrrid K Y W H X B X ˙ W f LTrn K W | trL K W f ˙ X V
14 9 13 eqsstrd K Y W H X B X ˙ W I X V