Metamath Proof Explorer


Theorem dihglblem3aN

Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b
|- B = ( Base ` K )
dihglblem.l
|- .<_ = ( le ` K )
dihglblem.m
|- ./\ = ( meet ` K )
dihglblem.g
|- G = ( glb ` K )
dihglblem.h
|- H = ( LHyp ` K )
dihglblem.t
|- T = { u e. B | E. v e. S u = ( v ./\ W ) }
dihglblem.i
|- J = ( ( DIsoB ` K ) ` W )
dihglblem.ih
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihglblem3aN
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ ( G ` S ) .<_ W ) -> ( I ` ( G ` S ) ) = |^|_ x e. T ( I ` x ) )

Proof

Step Hyp Ref Expression
1 dihglblem.b
 |-  B = ( Base ` K )
2 dihglblem.l
 |-  .<_ = ( le ` K )
3 dihglblem.m
 |-  ./\ = ( meet ` K )
4 dihglblem.g
 |-  G = ( glb ` K )
5 dihglblem.h
 |-  H = ( LHyp ` K )
6 dihglblem.t
 |-  T = { u e. B | E. v e. S u = ( v ./\ W ) }
7 dihglblem.i
 |-  J = ( ( DIsoB ` K ) ` W )
8 dihglblem.ih
 |-  I = ( ( DIsoH ` K ) ` W )
9 1 2 3 4 5 6 dihglblem2N
 |-  ( ( ( K e. HL /\ W e. H ) /\ S C_ B /\ ( G ` S ) .<_ W ) -> ( G ` S ) = ( G ` T ) )
10 9 3adant2r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ ( G ` S ) .<_ W ) -> ( G ` S ) = ( G ` T ) )
11 10 fveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ ( G ` S ) .<_ W ) -> ( I ` ( G ` S ) ) = ( I ` ( G ` T ) ) )
12 1 2 3 4 5 6 7 8 dihglblem3N
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ ( G ` S ) .<_ W ) -> ( I ` ( G ` T ) ) = |^|_ x e. T ( I ` x ) )
13 11 12 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ ( G ` S ) .<_ W ) -> ( I ` ( G ` S ) ) = |^|_ x e. T ( I ` x ) )