Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihglblem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihglblem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dihglblem.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
5 |
|
dihglblem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dihglblem.t |
⊢ 𝑇 = { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } |
7 |
|
dihglblem.i |
⊢ 𝐽 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihglblem.ih |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 4 5 6
|
dihglblem2N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐺 ‘ 𝑆 ) = ( 𝐺 ‘ 𝑇 ) ) |
10 |
9
|
3adant2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐺 ‘ 𝑆 ) = ( 𝐺 ‘ 𝑇 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑇 ) ) ) |
12 |
1 2 3 4 5 6 7 8
|
dihglblem3N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑇 ) ) = ∩ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ) |
13 |
11 12
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ) |