| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglblem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihglblem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihglblem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dihglblem.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 5 |
|
dihglblem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
dihglblem.t |
⊢ 𝑇 = { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } |
| 7 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ HL ) |
| 8 |
7
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → 𝐾 ∈ HL ) |
| 10 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → 𝐾 ∈ CLat ) |
| 12 |
|
ssrab2 |
⊢ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ⊆ 𝐵 |
| 13 |
6 12
|
eqsstri |
⊢ 𝑇 ⊆ 𝐵 |
| 14 |
1 4
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
| 15 |
11 13 14
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
| 17 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 19 |
17 18
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 20 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ 𝐻 ) |
| 21 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ 𝐵 ) |
| 23 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑥 ∧ 𝑊 ) ∈ 𝐵 ) |
| 24 |
8 19 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∧ 𝑊 ) ∈ 𝐵 ) |
| 25 |
7 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
| 26 |
|
eqidd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∧ 𝑊 ) = ( 𝑥 ∧ 𝑊 ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑣 = 𝑥 → ( 𝑣 ∧ 𝑊 ) = ( 𝑥 ∧ 𝑊 ) ) |
| 28 |
27
|
rspceeqv |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ( 𝑥 ∧ 𝑊 ) = ( 𝑥 ∧ 𝑊 ) ) → ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) |
| 29 |
18 26 28
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) |
| 30 |
|
eqeq1 |
⊢ ( 𝑢 = ( 𝑥 ∧ 𝑊 ) → ( 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ( 𝑥 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
| 31 |
30
|
rexbidv |
⊢ ( 𝑢 = ( 𝑥 ∧ 𝑊 ) → ( ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
| 32 |
31
|
elrab |
⊢ ( ( 𝑥 ∧ 𝑊 ) ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ↔ ( ( 𝑥 ∧ 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
| 33 |
24 29 32
|
sylanbrc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∧ 𝑊 ) ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) |
| 34 |
33 6
|
eleqtrrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∧ 𝑊 ) ∈ 𝑇 ) |
| 35 |
1 2 4
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ ( 𝑥 ∧ 𝑊 ) ∈ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝑥 ∧ 𝑊 ) ) |
| 36 |
13 35
|
mp3an2 |
⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝑥 ∧ 𝑊 ) ∈ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝑥 ∧ 𝑊 ) ) |
| 37 |
25 34 36
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝑥 ∧ 𝑊 ) ) |
| 38 |
1 2 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑥 ∧ 𝑊 ) ≤ 𝑥 ) |
| 39 |
8 19 22 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∧ 𝑊 ) ≤ 𝑥 ) |
| 40 |
1 2 8 16 24 19 37 39
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑇 ) ≤ 𝑥 ) |
| 41 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ 𝑤 = ( 𝑣 ∧ 𝑊 ) ) ) |
| 42 |
41
|
rexbidv |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ∃ 𝑣 ∈ 𝑆 𝑤 = ( 𝑣 ∧ 𝑊 ) ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∧ 𝑊 ) = ( 𝑦 ∧ 𝑊 ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( 𝑣 = 𝑦 → ( 𝑤 = ( 𝑣 ∧ 𝑊 ) ↔ 𝑤 = ( 𝑦 ∧ 𝑊 ) ) ) |
| 45 |
44
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ 𝑆 𝑤 = ( 𝑣 ∧ 𝑊 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑤 = ( 𝑦 ∧ 𝑊 ) ) |
| 46 |
42 45
|
bitrdi |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑤 = ( 𝑦 ∧ 𝑊 ) ) ) |
| 47 |
46 6
|
elrab2 |
⊢ ( 𝑤 ∈ 𝑇 ↔ ( 𝑤 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝑆 𝑤 = ( 𝑦 ∧ 𝑊 ) ) ) |
| 48 |
|
simp3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 49 |
|
simp13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
| 50 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑦 ) ) |
| 51 |
50
|
rspcva |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝑧 ≤ 𝑦 ) |
| 52 |
48 49 51
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ≤ 𝑦 ) |
| 53 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝐾 ∈ HL ) |
| 54 |
53
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ HL ) |
| 55 |
54
|
hllatd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
| 56 |
|
simp12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 57 |
54 10
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
| 58 |
|
simp112 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 59 |
1 4
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 60 |
57 58 59
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 61 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝑊 ∈ 𝐻 ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑊 ∈ 𝐻 ) |
| 63 |
62 21
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑊 ∈ 𝐵 ) |
| 64 |
1 2 4
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 65 |
57 56 58 64
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 66 |
49 65
|
mpbird |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) |
| 67 |
|
simp113 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) |
| 68 |
1 2 55 56 60 63 66 67
|
lattrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ≤ 𝑊 ) |
| 69 |
58 48
|
sseldd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 70 |
1 2 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑧 ≤ 𝑦 ∧ 𝑧 ≤ 𝑊 ) ↔ 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) ) ) |
| 71 |
55 56 69 63 70
|
syl13anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑧 ≤ 𝑦 ∧ 𝑧 ≤ 𝑊 ) ↔ 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) ) ) |
| 72 |
52 68 71
|
mpbi2and |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) ) |
| 73 |
72
|
3expia |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑆 → 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) ) ) |
| 74 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑦 ∧ 𝑊 ) → ( 𝑧 ≤ 𝑤 ↔ 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) ) ) |
| 75 |
74
|
biimprcd |
⊢ ( 𝑧 ≤ ( 𝑦 ∧ 𝑊 ) → ( 𝑤 = ( 𝑦 ∧ 𝑊 ) → 𝑧 ≤ 𝑤 ) ) |
| 76 |
73 75
|
syl6 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑆 → ( 𝑤 = ( 𝑦 ∧ 𝑊 ) → 𝑧 ≤ 𝑤 ) ) ) |
| 77 |
76
|
rexlimdv |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑆 𝑤 = ( 𝑦 ∧ 𝑊 ) → 𝑧 ≤ 𝑤 ) ) |
| 78 |
77
|
expimpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ( ( 𝑤 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝑆 𝑤 = ( 𝑦 ∧ 𝑊 ) ) → 𝑧 ≤ 𝑤 ) ) |
| 79 |
47 78
|
biimtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ( 𝑤 ∈ 𝑇 → 𝑧 ≤ 𝑤 ) ) |
| 80 |
79
|
ralrimiv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ∀ 𝑤 ∈ 𝑇 𝑧 ≤ 𝑤 ) |
| 81 |
53 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝐾 ∈ CLat ) |
| 82 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝑧 ∈ 𝐵 ) |
| 83 |
1 2 4
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑧 ∈ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑇 ) ↔ ∀ 𝑤 ∈ 𝑇 𝑧 ≤ 𝑤 ) ) |
| 84 |
13 83
|
mp3an3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑇 ) ↔ ∀ 𝑤 ∈ 𝑇 𝑧 ≤ 𝑤 ) ) |
| 85 |
81 82 84
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑇 ) ↔ ∀ 𝑤 ∈ 𝑇 𝑧 ≤ 𝑤 ) ) |
| 86 |
80 85
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) ∧ 𝑧 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑧 ≤ 𝑥 ) → 𝑧 ≤ ( 𝐺 ‘ 𝑇 ) ) |
| 87 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → 𝑆 ⊆ 𝐵 ) |
| 88 |
1 2 4 40 86 11 87 15
|
isglbd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑊 ) → ( 𝐺 ‘ 𝑆 ) = ( 𝐺 ‘ 𝑇 ) ) |