Metamath Proof Explorer


Theorem isglbd

Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Hypotheses isglbd.b 𝐵 = ( Base ‘ 𝐾 )
isglbd.l = ( le ‘ 𝐾 )
isglbd.g 𝐺 = ( glb ‘ 𝐾 )
isglbd.1 ( ( 𝜑𝑦𝑆 ) → 𝐻 𝑦 )
isglbd.2 ( ( 𝜑𝑥𝐵 ∧ ∀ 𝑦𝑆 𝑥 𝑦 ) → 𝑥 𝐻 )
isglbd.3 ( 𝜑𝐾 ∈ CLat )
isglbd.4 ( 𝜑𝑆𝐵 )
isglbd.5 ( 𝜑𝐻𝐵 )
Assertion isglbd ( 𝜑 → ( 𝐺𝑆 ) = 𝐻 )

Proof

Step Hyp Ref Expression
1 isglbd.b 𝐵 = ( Base ‘ 𝐾 )
2 isglbd.l = ( le ‘ 𝐾 )
3 isglbd.g 𝐺 = ( glb ‘ 𝐾 )
4 isglbd.1 ( ( 𝜑𝑦𝑆 ) → 𝐻 𝑦 )
5 isglbd.2 ( ( 𝜑𝑥𝐵 ∧ ∀ 𝑦𝑆 𝑥 𝑦 ) → 𝑥 𝐻 )
6 isglbd.3 ( 𝜑𝐾 ∈ CLat )
7 isglbd.4 ( 𝜑𝑆𝐵 )
8 isglbd.5 ( 𝜑𝐻𝐵 )
9 biid ( ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ↔ ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) )
10 1 2 3 9 6 7 glbval ( 𝜑 → ( 𝐺𝑆 ) = ( 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ) )
11 4 ralrimiva ( 𝜑 → ∀ 𝑦𝑆 𝐻 𝑦 )
12 5 3exp ( 𝜑 → ( 𝑥𝐵 → ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) )
13 12 ralrimiv ( 𝜑 → ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) )
14 1 3 clatglbcl2 ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝑆 ∈ dom 𝐺 )
15 6 7 14 syl2anc ( 𝜑𝑆 ∈ dom 𝐺 )
16 1 2 3 9 6 15 glbeu ( 𝜑 → ∃! 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) )
17 breq1 ( = 𝐻 → ( 𝑦𝐻 𝑦 ) )
18 17 ralbidv ( = 𝐻 → ( ∀ 𝑦𝑆 𝑦 ↔ ∀ 𝑦𝑆 𝐻 𝑦 ) )
19 breq2 ( = 𝐻 → ( 𝑥 𝑥 𝐻 ) )
20 19 imbi2d ( = 𝐻 → ( ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) )
21 20 ralbidv ( = 𝐻 → ( ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) )
22 18 21 anbi12d ( = 𝐻 → ( ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ↔ ( ∀ 𝑦𝑆 𝐻 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) ) )
23 22 riota2 ( ( 𝐻𝐵 ∧ ∃! 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ) → ( ( ∀ 𝑦𝑆 𝐻 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) ↔ ( 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ) = 𝐻 ) )
24 8 16 23 syl2anc ( 𝜑 → ( ( ∀ 𝑦𝑆 𝐻 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 𝐻 ) ) ↔ ( 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ) = 𝐻 ) )
25 11 13 24 mpbi2and ( 𝜑 → ( 𝐵 ( ∀ 𝑦𝑆 𝑦 ∧ ∀ 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦𝑥 ) ) ) = 𝐻 )
26 10 25 eqtrd ( 𝜑 → ( 𝐺𝑆 ) = 𝐻 )