| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isglbd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
isglbd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
isglbd.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 4 |
|
isglbd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐻 ≤ 𝑦 ) |
| 5 |
|
isglbd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝐻 ) |
| 6 |
|
isglbd.3 |
⊢ ( 𝜑 → 𝐾 ∈ CLat ) |
| 7 |
|
isglbd.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 8 |
|
isglbd.5 |
⊢ ( 𝜑 → 𝐻 ∈ 𝐵 ) |
| 9 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) |
| 10 |
1 2 3 9 6 7
|
glbval |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ℩ ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) ) |
| 11 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ) |
| 12 |
5
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ) |
| 13 |
12
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) |
| 14 |
1 3
|
clatglbcl2 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝐺 ) |
| 15 |
6 7 14
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |
| 16 |
1 2 3 9 6 15
|
glbeu |
⊢ ( 𝜑 → ∃! ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) |
| 17 |
|
breq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ≤ 𝑦 ↔ 𝐻 ≤ 𝑦 ) ) |
| 18 |
17
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ) ) |
| 19 |
|
breq2 |
⊢ ( ℎ = 𝐻 → ( 𝑥 ≤ ℎ ↔ 𝑥 ≤ 𝐻 ) ) |
| 20 |
19
|
imbi2d |
⊢ ( ℎ = 𝐻 → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ) |
| 22 |
18 21
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ) ) |
| 23 |
22
|
riota2 |
⊢ ( ( 𝐻 ∈ 𝐵 ∧ ∃! ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) → ( ( ∀ 𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ↔ ( ℩ ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) = 𝐻 ) ) |
| 24 |
8 16 23
|
syl2anc |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻 ) ) ↔ ( ℩ ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) = 𝐻 ) ) |
| 25 |
11 13 24
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ ℎ ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ ) ) ) = 𝐻 ) |
| 26 |
10 25
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝐻 ) |