Metamath Proof Explorer


Theorem dihglblem3aN

Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b B=BaseK
dihglblem.l ˙=K
dihglblem.m ˙=meetK
dihglblem.g G=glbK
dihglblem.h H=LHypK
dihglblem.t T=uB|vSu=v˙W
dihglblem.i J=DIsoBKW
dihglblem.ih I=DIsoHKW
Assertion dihglblem3aN KHLWHSBSGS˙WIGS=xTIx

Proof

Step Hyp Ref Expression
1 dihglblem.b B=BaseK
2 dihglblem.l ˙=K
3 dihglblem.m ˙=meetK
4 dihglblem.g G=glbK
5 dihglblem.h H=LHypK
6 dihglblem.t T=uB|vSu=v˙W
7 dihglblem.i J=DIsoBKW
8 dihglblem.ih I=DIsoHKW
9 1 2 3 4 5 6 dihglblem2N KHLWHSBGS˙WGS=GT
10 9 3adant2r KHLWHSBSGS˙WGS=GT
11 10 fveq2d KHLWHSBSGS˙WIGS=IGT
12 1 2 3 4 5 6 7 8 dihglblem3N KHLWHSBSGS˙WIGT=xTIx
13 11 12 eqtrd KHLWHSBSGS˙WIGS=xTIx