Metamath Proof Explorer


Theorem dihglblem3aN

Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b B = Base K
dihglblem.l ˙ = K
dihglblem.m ˙ = meet K
dihglblem.g G = glb K
dihglblem.h H = LHyp K
dihglblem.t T = u B | v S u = v ˙ W
dihglblem.i J = DIsoB K W
dihglblem.ih I = DIsoH K W
Assertion dihglblem3aN K HL W H S B S G S ˙ W I G S = x T I x

Proof

Step Hyp Ref Expression
1 dihglblem.b B = Base K
2 dihglblem.l ˙ = K
3 dihglblem.m ˙ = meet K
4 dihglblem.g G = glb K
5 dihglblem.h H = LHyp K
6 dihglblem.t T = u B | v S u = v ˙ W
7 dihglblem.i J = DIsoB K W
8 dihglblem.ih I = DIsoH K W
9 1 2 3 4 5 6 dihglblem2N K HL W H S B G S ˙ W G S = G T
10 9 3adant2r K HL W H S B S G S ˙ W G S = G T
11 10 fveq2d K HL W H S B S G S ˙ W I G S = I G T
12 1 2 3 4 5 6 7 8 dihglblem3N K HL W H S B S G S ˙ W I G T = x T I x
13 11 12 eqtrd K HL W H S B S G S ˙ W I G S = x T I x