Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem.b |
|
2 |
|
dihglblem.l |
|
3 |
|
dihglblem.m |
|
4 |
|
dihglblem.g |
|
5 |
|
dihglblem.h |
|
6 |
|
dihglblem.t |
|
7 |
|
dihglblem.i |
|
8 |
|
dihglblem.ih |
|
9 |
|
simp1 |
|
10 |
|
simp11l |
|
11 |
10
|
hllatd |
|
12 |
|
simp12l |
|
13 |
|
simp3 |
|
14 |
12 13
|
sseldd |
|
15 |
|
simp11r |
|
16 |
1 5
|
lhpbase |
|
17 |
15 16
|
syl |
|
18 |
1 2 3
|
latmle2 |
|
19 |
11 14 17 18
|
syl3anc |
|
20 |
19
|
3expia |
|
21 |
|
breq1 |
|
22 |
21
|
biimprcd |
|
23 |
20 22
|
syl6 |
|
24 |
23
|
rexlimdv |
|
25 |
24
|
ss2rabdv |
|
26 |
6 25
|
eqsstrid |
|
27 |
1 2 5 7
|
dibdmN |
|
28 |
27
|
3ad2ant1 |
|
29 |
26 28
|
sseqtrrd |
|
30 |
1 2 3 4 5 6
|
dihglblem2aN |
|
31 |
30
|
3adant3 |
|
32 |
4 5 7
|
dibglbN |
|
33 |
9 29 31 32
|
syl12anc |
|
34 |
1 2 3 4 5 6
|
dihglblem2N |
|
35 |
34
|
3adant2r |
|
36 |
35
|
fveq2d |
|
37 |
|
simpl1 |
|
38 |
26
|
sselda |
|
39 |
|
breq1 |
|
40 |
39
|
elrab |
|
41 |
38 40
|
sylib |
|
42 |
1 2 5 8 7
|
dihvalb |
|
43 |
37 41 42
|
syl2anc |
|
44 |
43
|
iineq2dv |
|
45 |
33 36 44
|
3eqtr4rd |
|
46 |
|
simp1l |
|
47 |
|
hlclat |
|
48 |
46 47
|
syl |
|
49 |
|
simp2l |
|
50 |
1 4
|
clatglbcl |
|
51 |
48 49 50
|
syl2anc |
|
52 |
|
simp3 |
|
53 |
1 2 5 8 7
|
dihvalb |
|
54 |
9 51 52 53
|
syl12anc |
|
55 |
35
|
fveq2d |
|
56 |
45 54 55
|
3eqtr2rd |
|