Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem.b |
|
2 |
|
dihglblem.l |
|
3 |
|
dihglblem.m |
|
4 |
|
dihglblem.g |
|
5 |
|
dihglblem.h |
|
6 |
|
dihglblem.t |
|
7 |
6
|
a1i |
|
8 |
|
simprr |
|
9 |
|
n0 |
|
10 |
8 9
|
sylib |
|
11 |
|
hllat |
|
12 |
11
|
ad3antrrr |
|
13 |
|
simplrl |
|
14 |
|
simpr |
|
15 |
13 14
|
sseldd |
|
16 |
1 5
|
lhpbase |
|
17 |
16
|
ad3antlr |
|
18 |
1 3
|
latmcl |
|
19 |
12 15 17 18
|
syl3anc |
|
20 |
|
eqidd |
|
21 |
|
oveq1 |
|
22 |
21
|
rspceeqv |
|
23 |
14 20 22
|
syl2anc |
|
24 |
|
ovex |
|
25 |
|
eleq1 |
|
26 |
|
eqeq1 |
|
27 |
26
|
rexbidv |
|
28 |
27
|
elrab |
|
29 |
25 28
|
bitrdi |
|
30 |
24 29
|
spcev |
|
31 |
19 23 30
|
syl2anc |
|
32 |
|
n0 |
|
33 |
31 32
|
sylibr |
|
34 |
10 33
|
exlimddv |
|
35 |
7 34
|
eqnetrd |
|