Metamath Proof Explorer


Theorem dihglblem2aN

Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b 𝐵 = ( Base ‘ 𝐾 )
dihglblem.l = ( le ‘ 𝐾 )
dihglblem.m = ( meet ‘ 𝐾 )
dihglblem.g 𝐺 = ( glb ‘ 𝐾 )
dihglblem.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglblem.t 𝑇 = { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) }
Assertion dihglblem2aN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → 𝑇 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dihglblem.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglblem.l = ( le ‘ 𝐾 )
3 dihglblem.m = ( meet ‘ 𝐾 )
4 dihglblem.g 𝐺 = ( glb ‘ 𝐾 )
5 dihglblem.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dihglblem.t 𝑇 = { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) }
7 6 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → 𝑇 = { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } )
8 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ )
9 n0 ( 𝑆 ≠ ∅ ↔ ∃ 𝑧 𝑧𝑆 )
10 8 9 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → ∃ 𝑧 𝑧𝑆 )
11 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
12 11 ad3antrrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → 𝐾 ∈ Lat )
13 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → 𝑆𝐵 )
14 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → 𝑧𝑆 )
15 13 14 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → 𝑧𝐵 )
16 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
17 16 ad3antlr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → 𝑊𝐵 )
18 1 3 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑧𝐵𝑊𝐵 ) → ( 𝑧 𝑊 ) ∈ 𝐵 )
19 12 15 17 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → ( 𝑧 𝑊 ) ∈ 𝐵 )
20 eqidd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → ( 𝑧 𝑊 ) = ( 𝑧 𝑊 ) )
21 oveq1 ( 𝑣 = 𝑧 → ( 𝑣 𝑊 ) = ( 𝑧 𝑊 ) )
22 21 rspceeqv ( ( 𝑧𝑆 ∧ ( 𝑧 𝑊 ) = ( 𝑧 𝑊 ) ) → ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) )
23 14 20 22 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) )
24 ovex ( 𝑧 𝑊 ) ∈ V
25 eleq1 ( 𝑤 = ( 𝑧 𝑊 ) → ( 𝑤 ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ↔ ( 𝑧 𝑊 ) ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ) )
26 eqeq1 ( 𝑢 = ( 𝑧 𝑊 ) → ( 𝑢 = ( 𝑣 𝑊 ) ↔ ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) ) )
27 26 rexbidv ( 𝑢 = ( 𝑧 𝑊 ) → ( ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) ↔ ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) ) )
28 27 elrab ( ( 𝑧 𝑊 ) ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ↔ ( ( 𝑧 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) ) )
29 25 28 bitrdi ( 𝑤 = ( 𝑧 𝑊 ) → ( 𝑤 ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ↔ ( ( 𝑧 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) ) ) )
30 24 29 spcev ( ( ( 𝑧 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣𝑆 ( 𝑧 𝑊 ) = ( 𝑣 𝑊 ) ) → ∃ 𝑤 𝑤 ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } )
31 19 23 30 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → ∃ 𝑤 𝑤 ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } )
32 n0 ( { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } )
33 31 32 sylibr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑧𝑆 ) → { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ≠ ∅ )
34 10 33 exlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) } ≠ ∅ )
35 7 34 eqnetrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → 𝑇 ≠ ∅ )