Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihglblem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihglblem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dihglblem.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
5 |
|
dihglblem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dihglblem.t |
⊢ 𝑇 = { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } |
7 |
6
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑇 = { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) |
8 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ ) |
9 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑆 ) |
10 |
8 9
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ∃ 𝑧 𝑧 ∈ 𝑆 ) |
11 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
13 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
15 |
13 14
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
16 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
17 |
16
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑊 ∈ 𝐵 ) |
18 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑧 ∧ 𝑊 ) ∈ 𝐵 ) |
19 |
12 15 17 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ∧ 𝑊 ) ∈ 𝐵 ) |
20 |
|
eqidd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ∧ 𝑊 ) = ( 𝑧 ∧ 𝑊 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∧ 𝑊 ) = ( 𝑧 ∧ 𝑊 ) ) |
22 |
21
|
rspceeqv |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( 𝑧 ∧ 𝑊 ) = ( 𝑧 ∧ 𝑊 ) ) → ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) |
23 |
14 20 22
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) |
24 |
|
ovex |
⊢ ( 𝑧 ∧ 𝑊 ) ∈ V |
25 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑧 ∧ 𝑊 ) → ( 𝑤 ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ↔ ( 𝑧 ∧ 𝑊 ) ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑢 = ( 𝑧 ∧ 𝑊 ) → ( 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑢 = ( 𝑧 ∧ 𝑊 ) → ( ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
28 |
27
|
elrab |
⊢ ( ( 𝑧 ∧ 𝑊 ) ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ↔ ( ( 𝑧 ∧ 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) |
29 |
25 28
|
bitrdi |
⊢ ( 𝑤 = ( 𝑧 ∧ 𝑊 ) → ( 𝑤 ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ↔ ( ( 𝑧 ∧ 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) ) ) |
30 |
24 29
|
spcev |
⊢ ( ( ( 𝑧 ∧ 𝑊 ) ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝑧 ∧ 𝑊 ) = ( 𝑣 ∧ 𝑊 ) ) → ∃ 𝑤 𝑤 ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) |
31 |
19 23 30
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → ∃ 𝑤 𝑤 ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) |
32 |
|
n0 |
⊢ ( { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ) |
33 |
31 32
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑧 ∈ 𝑆 ) → { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ≠ ∅ ) |
34 |
10 33
|
exlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } ≠ ∅ ) |
35 |
7 34
|
eqnetrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑇 ≠ ∅ ) |