Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetc.b |
|- B = ( Base ` K ) |
2 |
|
dihmeetc.l |
|- .<_ = ( le ` K ) |
3 |
|
dihmeetc.m |
|- ./\ = ( meet ` K ) |
4 |
|
dihmeetc.h |
|- H = ( LHyp ` K ) |
5 |
|
dihmeetc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
6 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ X .<_ W ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ X .<_ W ) -> X e. B ) |
8 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ X .<_ W ) -> X .<_ W ) |
9 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ X .<_ W ) -> ( Y e. B /\ Y .<_ W ) ) |
10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
11 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
12 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
13 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
14 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
15 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
16 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = q ) |
17 |
|
eqid |
|- ( g e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( g e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
18 |
1 3 4 5 2 10 11 12 13 14 15 16 17
|
dihmeetlem2N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( I ` ( X ./\ Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
19 |
6 7 8 9 18
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ X .<_ W ) -> ( I ` ( X ./\ Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
20 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ -. X .<_ W ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ -. X .<_ W ) -> X e. B ) |
22 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ -. X .<_ W ) -> -. X .<_ W ) |
23 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ -. X .<_ W ) -> ( Y e. B /\ Y .<_ W ) ) |
24 |
1 3 4 5 2 10 11 12 13 14 15 16 17
|
dihmeetlem1N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( I ` ( X ./\ Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
25 |
20 21 22 23 24
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) /\ -. X .<_ W ) -> ( I ` ( X ./\ Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
26 |
19 25
|
pm2.61dan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( Y e. B /\ Y .<_ W ) ) -> ( I ` ( X ./\ Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |