Metamath Proof Explorer


Theorem dihmeetbN

Description: Isomorphism H of a lattice meet when one element is under the fiducial hyperplane W . (Contributed by NM, 26-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetc.b B=BaseK
dihmeetc.l ˙=K
dihmeetc.m ˙=meetK
dihmeetc.h H=LHypK
dihmeetc.i I=DIsoHKW
Assertion dihmeetbN KHLWHXBYBY˙WIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetc.b B=BaseK
2 dihmeetc.l ˙=K
3 dihmeetc.m ˙=meetK
4 dihmeetc.h H=LHypK
5 dihmeetc.i I=DIsoHKW
6 simpl1 KHLWHXBYBY˙WX˙WKHLWH
7 simpl2 KHLWHXBYBY˙WX˙WXB
8 simpr KHLWHXBYBY˙WX˙WX˙W
9 simpl3 KHLWHXBYBY˙WX˙WYBY˙W
10 eqid joinK=joinK
11 eqid AtomsK=AtomsK
12 eqid ocKW=ocKW
13 eqid LTrnKW=LTrnKW
14 eqid trLKW=trLKW
15 eqid TEndoKW=TEndoKW
16 eqid ιgLTrnKW|gocKW=q=ιgLTrnKW|gocKW=q
17 eqid gLTrnKWIB=gLTrnKWIB
18 1 3 4 5 2 10 11 12 13 14 15 16 17 dihmeetlem2N KHLWHXBX˙WYBY˙WIX˙Y=IXIY
19 6 7 8 9 18 syl121anc KHLWHXBYBY˙WX˙WIX˙Y=IXIY
20 simpl1 KHLWHXBYBY˙W¬X˙WKHLWH
21 simpl2 KHLWHXBYBY˙W¬X˙WXB
22 simpr KHLWHXBYBY˙W¬X˙W¬X˙W
23 simpl3 KHLWHXBYBY˙W¬X˙WYBY˙W
24 1 3 4 5 2 10 11 12 13 14 15 16 17 dihmeetlem1N KHLWHXB¬X˙WYBY˙WIX˙Y=IXIY
25 20 21 22 23 24 syl121anc KHLWHXBYBY˙W¬X˙WIX˙Y=IXIY
26 19 25 pm2.61dan KHLWHXBYBY˙WIX˙Y=IXIY