Metamath Proof Explorer


Theorem dirkerdenne0

Description: The Dirchlet Kernel denominator is never 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirkerdenne0
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) =/= 0 )

Proof

Step Hyp Ref Expression
1 2cnd
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 e. CC )
2 picn
 |-  _pi e. CC
3 2 a1i
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi e. CC )
4 1 3 mulcld
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) e. CC )
5 recn
 |-  ( S e. RR -> S e. CC )
6 5 adantr
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> S e. CC )
7 6 halfcld
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( S / 2 ) e. CC )
8 7 sincld
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) e. CC )
9 2ne0
 |-  2 =/= 0
10 9 a1i
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 =/= 0 )
11 0re
 |-  0 e. RR
12 pipos
 |-  0 < _pi
13 11 12 gtneii
 |-  _pi =/= 0
14 13 a1i
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi =/= 0 )
15 1 3 10 14 mulne0d
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) =/= 0 )
16 6 1 3 10 14 divdiv1d
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S / 2 ) / _pi ) = ( S / ( 2 x. _pi ) ) )
17 simpr
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S mod ( 2 x. _pi ) ) = 0 )
18 2rp
 |-  2 e. RR+
19 pirp
 |-  _pi e. RR+
20 rpmulcl
 |-  ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ )
21 18 19 20 mp2an
 |-  ( 2 x. _pi ) e. RR+
22 mod0
 |-  ( ( S e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) )
23 21 22 mpan2
 |-  ( S e. RR -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) )
24 23 adantr
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) )
25 17 24 mtbid
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S / ( 2 x. _pi ) ) e. ZZ )
26 16 25 eqneltrd
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( ( S / 2 ) / _pi ) e. ZZ )
27 sineq0
 |-  ( ( S / 2 ) e. CC -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) )
28 7 27 syl
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) )
29 26 28 mtbird
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( sin ` ( S / 2 ) ) = 0 )
30 29 neqned
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) =/= 0 )
31 4 8 15 30 mulne0d
 |-  ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) =/= 0 )