Metamath Proof Explorer


Theorem disj4

Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004)

Ref Expression
Assertion disj4
|- ( ( A i^i B ) = (/) <-> -. ( A \ B ) C. A )

Proof

Step Hyp Ref Expression
1 disj3
 |-  ( ( A i^i B ) = (/) <-> A = ( A \ B ) )
2 eqcom
 |-  ( A = ( A \ B ) <-> ( A \ B ) = A )
3 difss
 |-  ( A \ B ) C_ A
4 dfpss2
 |-  ( ( A \ B ) C. A <-> ( ( A \ B ) C_ A /\ -. ( A \ B ) = A ) )
5 3 4 mpbiran
 |-  ( ( A \ B ) C. A <-> -. ( A \ B ) = A )
6 5 con2bii
 |-  ( ( A \ B ) = A <-> -. ( A \ B ) C. A )
7 1 2 6 3bitri
 |-  ( ( A i^i B ) = (/) <-> -. ( A \ B ) C. A )