Metamath Proof Explorer


Theorem disj4

Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004)

Ref Expression
Assertion disj4 AB=¬ABA

Proof

Step Hyp Ref Expression
1 disj3 AB=A=AB
2 eqcom A=ABAB=A
3 difss ABA
4 dfpss2 ABAABA¬AB=A
5 3 4 mpbiran ABA¬AB=A
6 5 con2bii AB=A¬ABA
7 1 2 6 3bitri AB=¬ABA