| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjecxrn |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] `' _E i^i [ B ] `' _E ) = (/) ) ) ) |
| 2 |
|
orcom |
|- ( ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] `' _E i^i [ B ] `' _E ) = (/) ) <-> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |
| 3 |
1 2
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |
| 4 |
|
disjeccnvep |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) <-> ( A i^i B ) = (/) ) ) |
| 5 |
4
|
orbi1d |
|- ( ( A e. V /\ B e. W ) -> ( ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) <-> ( ( A i^i B ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |
| 6 |
3 5
|
bitrd |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( A i^i B ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |