| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjecxrn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ) ) ) |
| 2 |
|
orcom |
⊢ ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ) ↔ ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) |
| 3 |
1 2
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |
| 4 |
|
disjeccnvep |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 5 |
4
|
orbi1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ↔ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |
| 6 |
3 5
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |