| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecxrn |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) |
| 2 |
|
ecxrn |
⊢ ( 𝐵 ∈ 𝑊 → [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) |
| 3 |
1 2
|
ineqan12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = ( { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ∩ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) ) |
| 4 |
|
inopab |
⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ∩ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } |
| 5 |
3 4
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } ) |
| 6 |
|
an4 |
⊢ ( ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ↔ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) |
| 7 |
6
|
opabbii |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } |
| 8 |
5 7
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ) |
| 9 |
8
|
neeq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ≠ ∅ ) ) |
| 10 |
|
opabn0 |
⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) |
| 11 |
9 10
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 12 |
|
exdistrv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) |
| 13 |
11 12
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 14 |
|
ecinn0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ) ) |
| 15 |
|
ecinn0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ↔ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) |
| 16 |
14 15
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 17 |
13 16
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ) ) |
| 18 |
|
neanior |
⊢ ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) |
| 19 |
17 18
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) ) |
| 20 |
19
|
necon4abid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) ) |