Metamath Proof Explorer


Theorem disjexc

Description: A variant of disjex , applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016)

Ref Expression
Hypothesis disjexc.1
|- ( x = y -> A = B )
Assertion disjexc
|- ( ( E. z ( z e. A /\ z e. B ) -> x = y ) -> ( A = B \/ ( A i^i B ) = (/) ) )

Proof

Step Hyp Ref Expression
1 disjexc.1
 |-  ( x = y -> A = B )
2 1 imim2i
 |-  ( ( E. z ( z e. A /\ z e. B ) -> x = y ) -> ( E. z ( z e. A /\ z e. B ) -> A = B ) )
3 orcom
 |-  ( ( A = B \/ -. E. z ( z e. A /\ z e. B ) ) <-> ( -. E. z ( z e. A /\ z e. B ) \/ A = B ) )
4 df-in
 |-  ( A i^i B ) = { z | ( z e. A /\ z e. B ) }
5 4 neeq1i
 |-  ( ( A i^i B ) =/= (/) <-> { z | ( z e. A /\ z e. B ) } =/= (/) )
6 abn0
 |-  ( { z | ( z e. A /\ z e. B ) } =/= (/) <-> E. z ( z e. A /\ z e. B ) )
7 5 6 bitr2i
 |-  ( E. z ( z e. A /\ z e. B ) <-> ( A i^i B ) =/= (/) )
8 7 necon2bbii
 |-  ( ( A i^i B ) = (/) <-> -. E. z ( z e. A /\ z e. B ) )
9 8 orbi2i
 |-  ( ( A = B \/ ( A i^i B ) = (/) ) <-> ( A = B \/ -. E. z ( z e. A /\ z e. B ) ) )
10 imor
 |-  ( ( E. z ( z e. A /\ z e. B ) -> A = B ) <-> ( -. E. z ( z e. A /\ z e. B ) \/ A = B ) )
11 3 9 10 3bitr4i
 |-  ( ( A = B \/ ( A i^i B ) = (/) ) <-> ( E. z ( z e. A /\ z e. B ) -> A = B ) )
12 2 11 sylibr
 |-  ( ( E. z ( z e. A /\ z e. B ) -> x = y ) -> ( A = B \/ ( A i^i B ) = (/) ) )