Metamath Proof Explorer


Theorem disjss

Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion disjss
|- ( A C_ B -> ( Disj B -> Disj A ) )

Proof

Step Hyp Ref Expression
1 cnvss
 |-  ( A C_ B -> `' A C_ `' B )
2 funALTVss
 |-  ( `' A C_ `' B -> ( FunALTV `' B -> FunALTV `' A ) )
3 1 2 syl
 |-  ( A C_ B -> ( FunALTV `' B -> FunALTV `' A ) )
4 relss
 |-  ( A C_ B -> ( Rel B -> Rel A ) )
5 3 4 anim12d
 |-  ( A C_ B -> ( ( FunALTV `' B /\ Rel B ) -> ( FunALTV `' A /\ Rel A ) ) )
6 dfdisjALTV
 |-  ( Disj B <-> ( FunALTV `' B /\ Rel B ) )
7 dfdisjALTV
 |-  ( Disj A <-> ( FunALTV `' A /\ Rel A ) )
8 5 6 7 3imtr4g
 |-  ( A C_ B -> ( Disj B -> Disj A ) )