Description: Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020) (Revised by Peter Mazsa, 22-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjss | |- ( A C_ B -> ( Disj B -> Disj A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss | |- ( A C_ B -> `' A C_ `' B ) |
|
2 | funALTVss | |- ( `' A C_ `' B -> ( FunALTV `' B -> FunALTV `' A ) ) |
|
3 | 1 2 | syl | |- ( A C_ B -> ( FunALTV `' B -> FunALTV `' A ) ) |
4 | relss | |- ( A C_ B -> ( Rel B -> Rel A ) ) |
|
5 | 3 4 | anim12d | |- ( A C_ B -> ( ( FunALTV `' B /\ Rel B ) -> ( FunALTV `' A /\ Rel A ) ) ) |
6 | dfdisjALTV | |- ( Disj B <-> ( FunALTV `' B /\ Rel B ) ) |
|
7 | dfdisjALTV | |- ( Disj A <-> ( FunALTV `' A /\ Rel A ) ) |
|
8 | 5 6 7 | 3imtr4g | |- ( A C_ B -> ( Disj B -> Disj A ) ) |