| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgeq3d.1 |
|- ( ph -> A <_ B ) |
| 2 |
|
ditgeq3d.2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> D = E ) |
| 3 |
|
df-ditg |
|- S_ [ A -> B ] D _d x = if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) |
| 4 |
1
|
iftrued |
|- ( ph -> if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) = S. ( A (,) B ) D _d x ) |
| 5 |
3 4
|
eqtrid |
|- ( ph -> S_ [ A -> B ] D _d x = S. ( A (,) B ) D _d x ) |
| 6 |
2
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x ) |
| 7 |
|
df-ditg |
|- S_ [ A -> B ] E _d x = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) |
| 8 |
1
|
iftrued |
|- ( ph -> if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) = S. ( A (,) B ) E _d x ) |
| 9 |
7 8
|
eqtr2id |
|- ( ph -> S. ( A (,) B ) E _d x = S_ [ A -> B ] E _d x ) |
| 10 |
5 6 9
|
3eqtrd |
|- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |