Metamath Proof Explorer


Theorem ditgeq3d

Description: Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ditgeq3d.1 φAB
ditgeq3d.2 φxABD=E
Assertion ditgeq3d φABDdx=ABEdx

Proof

Step Hyp Ref Expression
1 ditgeq3d.1 φAB
2 ditgeq3d.2 φxABD=E
3 df-ditg ABDdx=ifABABDdxBADdx
4 1 iftrued φifABABDdxBADdx=ABDdx
5 3 4 eqtrid φABDdx=ABDdx
6 2 itgeq2dv φABDdx=ABEdx
7 df-ditg ABEdx=ifABABEdxBAEdx
8 1 iftrued φifABABEdxBAEdx=ABEdx
9 7 8 eqtr2id φABEdx=ABEdx
10 5 6 9 3eqtrd φABDdx=ABEdx