| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djacl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | djacl.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 3 |  | djacl.i |  |-  I = ( ( DIsoA ` K ) ` W ) | 
						
							| 4 |  | djacl.j |  |-  J = ( ( vA ` K ) ` W ) | 
						
							| 5 |  | eqid |  |-  ( ( ocA ` K ) ` W ) = ( ( ocA ` K ) ` W ) | 
						
							| 6 | 1 2 3 5 4 | djavalN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( X J Y ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) ) ) | 
						
							| 7 |  | inss1 |  |-  ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) C_ ( ( ( ocA ` K ) ` W ) ` X ) | 
						
							| 8 | 1 2 3 5 | docaclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X C_ T ) -> ( ( ( ocA ` K ) ` W ) ` X ) e. ran I ) | 
						
							| 9 | 8 | adantrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( ( ( ocA ` K ) ` W ) ` X ) e. ran I ) | 
						
							| 10 | 1 2 3 | diaelrnN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ocA ` K ) ` W ) ` X ) e. ran I ) -> ( ( ( ocA ` K ) ` W ) ` X ) C_ T ) | 
						
							| 11 | 9 10 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( ( ( ocA ` K ) ` W ) ` X ) C_ T ) | 
						
							| 12 | 7 11 | sstrid |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) C_ T ) | 
						
							| 13 | 1 2 3 5 | docaclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) C_ T ) -> ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) ) e. ran I ) | 
						
							| 14 | 12 13 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` X ) i^i ( ( ( ocA ` K ) ` W ) ` Y ) ) ) e. ran I ) | 
						
							| 15 | 6 14 | eqeltrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X C_ T /\ Y C_ T ) ) -> ( X J Y ) e. ran I ) |