| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djaj.k |  |-  .\/ = ( join ` K ) | 
						
							| 2 |  | djaj.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | djaj.i |  |-  I = ( ( DIsoA ` K ) ` W ) | 
						
							| 4 |  | djaj.j |  |-  J = ( ( vA ` K ) ` W ) | 
						
							| 5 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. Lat ) | 
						
							| 7 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OP ) | 
						
							| 9 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 10 | 9 2 3 | diadmclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X e. ( Base ` K ) ) | 
						
							| 11 | 10 | adantrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> X e. ( Base ` K ) ) | 
						
							| 12 |  | eqid |  |-  ( oc ` K ) = ( oc ` K ) | 
						
							| 13 | 9 12 | opoccl |  |-  ( ( K e. OP /\ X e. ( Base ` K ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) | 
						
							| 14 | 8 11 13 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) | 
						
							| 15 | 9 2 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 16 | 15 | ad2antlr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> W e. ( Base ` K ) ) | 
						
							| 17 | 9 12 | opoccl |  |-  ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) | 
						
							| 18 | 8 16 17 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) | 
						
							| 19 | 9 1 | latjcl |  |-  ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 20 | 6 14 18 19 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 21 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 22 | 9 21 | latmcl |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 23 | 6 20 16 22 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 24 | 9 2 3 | diadmclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> Y e. ( Base ` K ) ) | 
						
							| 25 | 24 | adantrl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> Y e. ( Base ` K ) ) | 
						
							| 26 | 9 12 | opoccl |  |-  ( ( K e. OP /\ Y e. ( Base ` K ) ) -> ( ( oc ` K ) ` Y ) e. ( Base ` K ) ) | 
						
							| 27 | 8 25 26 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` Y ) e. ( Base ` K ) ) | 
						
							| 28 | 9 1 | latjcl |  |-  ( ( K e. Lat /\ ( ( oc ` K ) ` Y ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 29 | 6 27 18 28 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 30 | 9 21 | latmcl |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 31 | 6 29 16 30 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 32 | 9 21 | latmcl |  |-  ( ( K e. Lat /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) ) | 
						
							| 33 | 6 23 31 32 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) ) | 
						
							| 34 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 35 | 9 34 21 | latmle2 |  |-  ( ( K e. Lat /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 36 | 6 23 31 35 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 37 | 9 34 21 | latmle2 |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 38 | 6 29 16 37 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 39 | 9 34 6 33 31 16 36 38 | lattrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) | 
						
							| 40 | 9 34 2 3 | diaeldm |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I <-> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I <-> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) ) ) | 
						
							| 42 | 33 39 41 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I ) | 
						
							| 43 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 44 |  | eqid |  |-  ( ( ocA ` K ) ` W ) = ( ( ocA ` K ) ` W ) | 
						
							| 45 | 1 21 12 2 43 3 44 | diaocN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) | 
						
							| 46 | 42 45 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) | 
						
							| 47 |  | hloml |  |-  ( K e. HL -> K e. OML ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OML ) | 
						
							| 49 | 9 1 | latjcl |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X .\/ Y ) e. ( Base ` K ) ) | 
						
							| 50 | 6 11 25 49 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) e. ( Base ` K ) ) | 
						
							| 51 | 34 2 3 | diadmleN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X ( le ` K ) W ) | 
						
							| 52 | 51 | adantrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> X ( le ` K ) W ) | 
						
							| 53 | 34 2 3 | diadmleN |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> Y ( le ` K ) W ) | 
						
							| 54 | 53 | adantrl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> Y ( le ` K ) W ) | 
						
							| 55 | 9 34 1 | latjle12 |  |-  ( ( K e. Lat /\ ( X e. ( Base ` K ) /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( X ( le ` K ) W /\ Y ( le ` K ) W ) <-> ( X .\/ Y ) ( le ` K ) W ) ) | 
						
							| 56 | 6 11 25 16 55 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X ( le ` K ) W /\ Y ( le ` K ) W ) <-> ( X .\/ Y ) ( le ` K ) W ) ) | 
						
							| 57 | 52 54 56 | mpbi2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) ( le ` K ) W ) | 
						
							| 58 | 9 34 1 21 12 | omlspjN |  |-  ( ( K e. OML /\ ( ( X .\/ Y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( X .\/ Y ) ( le ` K ) W ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X .\/ Y ) ) | 
						
							| 59 | 48 50 16 57 58 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X .\/ Y ) ) | 
						
							| 60 | 9 1 | latjidm |  |-  ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) | 
						
							| 61 | 6 18 60 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) | 
						
							| 62 | 61 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 63 | 9 1 | latjass |  |-  ( ( K e. Lat /\ ( ( X .\/ Y ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 64 | 6 50 18 18 63 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 65 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OL ) | 
						
							| 67 | 9 1 21 12 | oldmm2 |  |-  ( ( K e. OL /\ ( X .\/ Y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 68 | 66 50 16 67 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 69 | 9 1 21 12 | oldmj1 |  |-  ( ( K e. OL /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) | 
						
							| 70 | 66 11 25 69 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) | 
						
							| 71 | 9 34 21 | latleeqm1 |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) | 
						
							| 72 | 6 11 16 71 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) | 
						
							| 73 | 52 72 | mpbid |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X ( meet ` K ) W ) = X ) | 
						
							| 74 | 73 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( oc ` K ) ` X ) ) | 
						
							| 75 | 9 1 21 12 | oldmm1 |  |-  ( ( K e. OL /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 76 | 66 11 16 75 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 77 | 74 76 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` X ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 78 | 9 34 21 | latleeqm1 |  |-  ( ( K e. Lat /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( Y ( le ` K ) W <-> ( Y ( meet ` K ) W ) = Y ) ) | 
						
							| 79 | 6 25 16 78 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( Y ( le ` K ) W <-> ( Y ( meet ` K ) W ) = Y ) ) | 
						
							| 80 | 54 79 | mpbid |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( Y ( meet ` K ) W ) = Y ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( oc ` K ) ` Y ) ) | 
						
							| 82 | 9 1 21 12 | oldmm1 |  |-  ( ( K e. OL /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 83 | 66 25 16 82 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 84 | 81 83 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` Y ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 85 | 77 84 | oveq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 86 | 70 85 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) ) | 
						
							| 88 | 9 21 | latmmdir |  |-  ( ( K e. OL /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) | 
						
							| 89 | 66 20 29 16 88 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) | 
						
							| 90 | 87 89 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 92 | 68 91 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 94 | 64 93 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 95 | 62 94 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) | 
						
							| 96 | 95 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 97 | 59 96 | eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) = ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( X .\/ Y ) ) = ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) | 
						
							| 99 |  | simpl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 100 | 2 3 | diaclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I ) | 
						
							| 101 | 100 | adantrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` X ) e. ran I ) | 
						
							| 102 | 2 43 3 | diaelrnN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( I ` X ) e. ran I ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) | 
						
							| 103 | 101 102 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) | 
						
							| 104 | 2 3 | diaclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> ( I ` Y ) e. ran I ) | 
						
							| 105 | 104 | adantrl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` Y ) e. ran I ) | 
						
							| 106 | 2 43 3 | diaelrnN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( I ` Y ) e. ran I ) -> ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) | 
						
							| 107 | 105 106 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) | 
						
							| 108 | 2 43 3 44 4 | djavalN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) C_ ( ( LTrn ` K ) ` W ) /\ ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) | 
						
							| 109 | 99 103 107 108 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) | 
						
							| 110 | 9 34 21 | latmle2 |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 111 | 6 20 16 110 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 112 | 9 34 2 3 | diaeldm |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 114 | 23 111 113 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) | 
						
							| 115 | 9 34 2 3 | diaeldm |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 117 | 31 38 116 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) | 
						
							| 118 | 21 2 3 | diameetN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 119 | 99 114 117 118 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 120 | 1 21 12 2 43 3 44 | diaocN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) ) | 
						
							| 121 | 120 | adantrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) ) | 
						
							| 122 | 1 21 12 2 43 3 44 | diaocN |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) | 
						
							| 123 | 122 | adantrl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) | 
						
							| 124 | 121 123 | ineq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) | 
						
							| 125 | 119 124 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) | 
						
							| 126 | 125 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) | 
						
							| 127 | 109 126 | eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) | 
						
							| 128 | 46 98 127 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |