| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djaj.k | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | djaj.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | djaj.i | ⊢ 𝐼  =  ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | djaj.j | ⊢ 𝐽  =  ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝐾  ∈  Lat ) | 
						
							| 7 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝐾  ∈  OP ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 10 | 9 2 3 | diadmclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑋  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 11 | 10 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝑋  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 13 | 9 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 8 11 13 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 9 2 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 9 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 8 16 17 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 | 9 1 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 20 | 6 14 18 19 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 22 | 9 21 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 6 20 16 22 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 9 2 3 | diadmclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  dom  𝐼 )  →  𝑌  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 24 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝑌  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 26 | 9 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 27 | 8 25 26 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 28 | 9 1 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 29 | 6 27 18 28 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 9 21 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 6 29 16 30 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 | 9 21 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 6 23 31 32 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 34 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 35 | 9 34 21 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 36 | 6 23 31 35 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 37 | 9 34 21 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 38 | 6 29 16 37 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 39 | 9 34 6 33 31 16 36 38 | lattrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 40 | 9 34 2 3 | diaeldm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  dom  𝐼  ↔  ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  dom  𝐼  ↔  ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 42 | 33 39 41 | mpbir2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  dom  𝐼 ) | 
						
							| 43 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 44 |  | eqid | ⊢ ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 45 | 1 21 12 2 43 3 44 | diaocN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) | 
						
							| 46 | 42 45 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) | 
						
							| 47 |  | hloml | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OML ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝐾  ∈  OML ) | 
						
							| 49 | 9 1 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋  ∨  𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 50 | 6 11 25 49 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑋  ∨  𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 51 | 34 2 3 | diadmleN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑋 ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 52 | 51 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝑋 ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 53 | 34 2 3 | diadmleN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  dom  𝐼 )  →  𝑌 ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 54 | 53 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝑌 ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 55 | 9 34 1 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ∧  𝑌 ( le ‘ 𝐾 ) 𝑊 )  ↔  ( 𝑋  ∨  𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 56 | 6 11 25 16 55 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ∧  𝑌 ( le ‘ 𝐾 ) 𝑊 )  ↔  ( 𝑋  ∨  𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 57 | 52 54 56 | mpbi2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑋  ∨  𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 58 | 9 34 1 21 12 | omlspjN | ⊢ ( ( 𝐾  ∈  OML  ∧  ( ( 𝑋  ∨  𝑌 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑋  ∨  𝑌 ) ( le ‘ 𝐾 ) 𝑊 )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( 𝑋  ∨  𝑌 ) ) | 
						
							| 59 | 48 50 16 57 58 | syl121anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( 𝑋  ∨  𝑌 ) ) | 
						
							| 60 | 9 1 | latjidm | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 61 | 6 18 60 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 63 | 9 1 | latjass | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑋  ∨  𝑌 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 64 | 6 50 18 18 63 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 65 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  𝐾  ∈  OL ) | 
						
							| 67 | 9 1 21 12 | oldmm2 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑋  ∨  𝑌 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 68 | 66 50 16 67 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 69 | 9 1 21 12 | oldmj1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) | 
						
							| 70 | 66 11 25 69 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) | 
						
							| 71 | 9 34 21 | latleeqm1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) ) | 
						
							| 72 | 6 11 16 71 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) ) | 
						
							| 73 | 52 72 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) | 
						
							| 74 | 73 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) | 
						
							| 75 | 9 1 21 12 | oldmm1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 76 | 66 11 16 75 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 77 | 74 76 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 78 | 9 34 21 | latleeqm1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑌 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑌 ) ) | 
						
							| 79 | 6 25 16 78 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑌 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑌 ) ) | 
						
							| 80 | 54 79 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑌 ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) | 
						
							| 82 | 9 1 21 12 | oldmm1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑌  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 83 | 66 25 16 82 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 84 | 81 83 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 85 | 77 84 | oveq12d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 86 | 70 85 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 88 | 9 21 | latmmdir | ⊢ ( ( 𝐾  ∈  OL  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 89 | 66 20 29 16 88 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 90 | 87 89 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 92 | 68 91 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 94 | 64 93 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 95 | 62 94 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 96 | 95 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( 𝑋  ∨  𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 97 | 59 96 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝑋  ∨  𝑌 )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 99 |  | simpl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 100 | 2 3 | diaclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑋 )  ∈  ran  𝐼 ) | 
						
							| 101 | 100 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ 𝑋 )  ∈  ran  𝐼 ) | 
						
							| 102 | 2 43 3 | diaelrnN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐼 ‘ 𝑋 )  ∈  ran  𝐼 )  →  ( 𝐼 ‘ 𝑋 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 103 | 101 102 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ 𝑋 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 104 | 2 3 | diaclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑌 )  ∈  ran  𝐼 ) | 
						
							| 105 | 104 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ 𝑌 )  ∈  ran  𝐼 ) | 
						
							| 106 | 2 43 3 | diaelrnN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐼 ‘ 𝑌 )  ∈  ran  𝐼 )  →  ( 𝐼 ‘ 𝑌 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 107 | 105 106 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ 𝑌 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 108 | 2 43 3 44 4 | djavalN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝐼 ‘ 𝑋 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( 𝐼 ‘ 𝑌 )  ⊆  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) | 
						
							| 109 | 99 103 107 108 | syl12anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) | 
						
							| 110 | 9 34 21 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 111 | 6 20 16 110 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 112 | 9 34 2 3 | diaeldm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 114 | 23 111 113 | mpbir2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼 ) | 
						
							| 115 | 9 34 2 3 | diaeldm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 117 | 31 38 116 | mpbir2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼 ) | 
						
							| 118 | 21 2 3 | diameetN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  =  ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∩  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 119 | 99 114 117 118 | syl12anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  =  ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∩  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 120 | 1 21 12 2 43 3 44 | diaocN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 121 | 120 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 122 | 1 21 12 2 43 3 44 | diaocN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) | 
						
							| 123 | 122 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) | 
						
							| 124 | 121 123 | ineq12d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  ∩  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  =  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 125 | 119 124 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  =  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) | 
						
							| 127 | 109 126 | eqtr4d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) | 
						
							| 128 | 46 98 127 | 3eqtr4d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  dom  𝐼  ∧  𝑌  ∈  dom  𝐼 ) )  →  ( 𝐼 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |