| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oldmm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
oldmm1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
oldmm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
oldmm1.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 8 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 10 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 11 |
6 10
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 12 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 14 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 |
8 14
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 17 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 18 |
8 17
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 19 |
18
|
3adant2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 20 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 21 |
7 16 19 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 22 |
1 5 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |
| 23 |
7 16 19 22
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |
| 24 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 25 |
1 5 4
|
oplecon1b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 26 |
9 24 21 25
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 27 |
23 26
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑋 ) |
| 28 |
1 5 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |
| 29 |
7 16 19 28
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |
| 30 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 31 |
1 5 4
|
oplecon1b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑌 ) ) |
| 32 |
9 30 21 31
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑌 ) ) |
| 33 |
29 32
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑌 ) |
| 34 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
| 35 |
9 21 34
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
| 36 |
1 5 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑋 ∧ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑌 ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑌 ) ) ) |
| 37 |
7 35 24 30 36
|
syl13anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑋 ∧ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) 𝑌 ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑌 ) ) ) |
| 38 |
27 33 37
|
mpbi2and |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑌 ) ) |
| 39 |
1 5 4
|
oplecon1b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑌 ) ↔ ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 40 |
9 21 11 39
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ( le ‘ 𝐾 ) ( 𝑋 ∧ 𝑌 ) ↔ ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 41 |
38 40
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ( le ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |
| 42 |
1 5 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 43 |
6 42
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 44 |
1 5 4
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 45 |
9 11 24 44
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 46 |
43 45
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
| 47 |
1 5 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑌 ) |
| 48 |
6 47
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑌 ) |
| 49 |
1 5 4
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 50 |
9 11 30 49
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 51 |
48 50
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
| 52 |
1 5 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ 𝐵 ) ) → ( ( ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ∧ ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 53 |
7 16 19 13 52
|
syl13anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ∧ ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 54 |
46 51 53
|
mpbi2and |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
| 55 |
1 5 7 13 21 41 54
|
latasymd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |