Step |
Hyp |
Ref |
Expression |
1 |
|
omlspj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
omlspj.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
omlspj.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
omlspj.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
omlspj.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
6 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐾 ∈ Lat ) |
8 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐾 ∈ OP ) |
10 |
|
simp2r |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ 𝐵 ) |
11 |
1 5
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
13 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑌 ) ) ) |
14 |
7 12 10 13
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑌 ) ) ) |
15 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
16 |
1 5 4 15
|
opnoncon |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∧ ( ⊥ ‘ 𝑌 ) ) = ( 0. ‘ 𝐾 ) ) |
17 |
9 10 16
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 ∧ ( ⊥ ‘ 𝑌 ) ) = ( 0. ‘ 𝐾 ) ) |
18 |
14 17
|
eqtrd |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) |
19 |
18
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) ) = ( 𝑋 ∨ ( 0. ‘ 𝐾 ) ) ) |
20 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐾 ∈ OML ) |
21 |
|
simp2l |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ 𝐵 ) |
22 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) |
23 |
|
eqid |
⊢ ( cm ‘ 𝐾 ) = ( cm ‘ 𝐾 ) |
24 |
1 23
|
cmtidN |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ( cm ‘ 𝐾 ) 𝑌 ) |
25 |
20 10 24
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ( cm ‘ 𝐾 ) 𝑌 ) |
26 |
1 5 23
|
cmt3N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( cm ‘ 𝐾 ) 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ( cm ‘ 𝐾 ) 𝑌 ) ) |
27 |
20 10 10 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 ( cm ‘ 𝐾 ) 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ( cm ‘ 𝐾 ) 𝑌 ) ) |
28 |
25 27
|
mpbid |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ( cm ‘ 𝐾 ) 𝑌 ) |
29 |
1 2 3 4 23
|
omlmod1i2N |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( ⊥ ‘ 𝑌 ) ( cm ‘ 𝐾 ) 𝑌 ) ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) ) = ( ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑌 ) ) |
30 |
20 21 12 10 22 28 29
|
syl132anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑌 ) ∧ 𝑌 ) ) = ( ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑌 ) ) |
31 |
|
omlol |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐾 ∈ OL ) |
33 |
1 3 15
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ ( 0. ‘ 𝐾 ) ) = 𝑋 ) |
34 |
32 21 33
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( 0. ‘ 𝐾 ) ) = 𝑋 ) |
35 |
19 30 34
|
3eqtr3d |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ) |