Metamath Proof Explorer


Theorem omlspjN

Description: Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses omlspj.b B=BaseK
omlspj.l ˙=K
omlspj.j ˙=joinK
omlspj.m ˙=meetK
omlspj.o ˙=ocK
Assertion omlspjN KOMLXBYBX˙YX˙˙Y˙Y=X

Proof

Step Hyp Ref Expression
1 omlspj.b B=BaseK
2 omlspj.l ˙=K
3 omlspj.j ˙=joinK
4 omlspj.m ˙=meetK
5 omlspj.o ˙=ocK
6 omllat KOMLKLat
7 6 3ad2ant1 KOMLXBYBX˙YKLat
8 omlop KOMLKOP
9 8 3ad2ant1 KOMLXBYBX˙YKOP
10 simp2r KOMLXBYBX˙YYB
11 1 5 opoccl KOPYB˙YB
12 9 10 11 syl2anc KOMLXBYBX˙Y˙YB
13 1 4 latmcom KLat˙YBYB˙Y˙Y=Y˙˙Y
14 7 12 10 13 syl3anc KOMLXBYBX˙Y˙Y˙Y=Y˙˙Y
15 eqid 0.K=0.K
16 1 5 4 15 opnoncon KOPYBY˙˙Y=0.K
17 9 10 16 syl2anc KOMLXBYBX˙YY˙˙Y=0.K
18 14 17 eqtrd KOMLXBYBX˙Y˙Y˙Y=0.K
19 18 oveq2d KOMLXBYBX˙YX˙˙Y˙Y=X˙0.K
20 simp1 KOMLXBYBX˙YKOML
21 simp2l KOMLXBYBX˙YXB
22 simp3 KOMLXBYBX˙YX˙Y
23 eqid cmK=cmK
24 1 23 cmtidN KOMLYBYcmKY
25 20 10 24 syl2anc KOMLXBYBX˙YYcmKY
26 1 5 23 cmt3N KOMLYBYBYcmKY˙YcmKY
27 20 10 10 26 syl3anc KOMLXBYBX˙YYcmKY˙YcmKY
28 25 27 mpbid KOMLXBYBX˙Y˙YcmKY
29 1 2 3 4 23 omlmod1i2N KOMLXB˙YBYBX˙Y˙YcmKYX˙˙Y˙Y=X˙˙Y˙Y
30 20 21 12 10 22 28 29 syl132anc KOMLXBYBX˙YX˙˙Y˙Y=X˙˙Y˙Y
31 omlol KOMLKOL
32 31 3ad2ant1 KOMLXBYBX˙YKOL
33 1 3 15 olj01 KOLXBX˙0.K=X
34 32 21 33 syl2anc KOMLXBYBX˙YX˙0.K=X
35 19 30 34 3eqtr3d KOMLXBYBX˙YX˙˙Y˙Y=X