Metamath Proof Explorer


Theorem cmt3N

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. ( cmcm4i analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmt2.b B=BaseK
cmt2.o ˙=ocK
cmt2.c C=cmK
Assertion cmt3N KOMLXBYBXCY˙XCY

Proof

Step Hyp Ref Expression
1 cmt2.b B=BaseK
2 cmt2.o ˙=ocK
3 cmt2.c C=cmK
4 1 2 3 cmt2N KOMLYBXBYCXYC˙X
5 4 3com23 KOMLXBYBYCXYC˙X
6 1 3 cmtcomN KOMLXBYBXCYYCX
7 omlop KOMLKOP
8 7 3ad2ant1 KOMLXBYBKOP
9 simp2 KOMLXBYBXB
10 1 2 opoccl KOPXB˙XB
11 8 9 10 syl2anc KOMLXBYB˙XB
12 1 3 cmtcomN KOML˙XBYB˙XCYYC˙X
13 11 12 syld3an2 KOMLXBYB˙XCYYC˙X
14 5 6 13 3bitr4d KOMLXBYBXCY˙XCY