Metamath Proof Explorer


Theorem cmt4N

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. ( cmcm4i analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmt2.b B=BaseK
cmt2.o ˙=ocK
cmt2.c C=cmK
Assertion cmt4N KOMLXBYBXCY˙XC˙Y

Proof

Step Hyp Ref Expression
1 cmt2.b B=BaseK
2 cmt2.o ˙=ocK
3 cmt2.c C=cmK
4 1 2 3 cmt2N KOMLXBYBXCYXC˙Y
5 omlop KOMLKOP
6 5 3ad2ant1 KOMLXBYBKOP
7 simp3 KOMLXBYBYB
8 1 2 opoccl KOPYB˙YB
9 6 7 8 syl2anc KOMLXBYB˙YB
10 1 2 3 cmt3N KOMLXB˙YBXC˙Y˙XC˙Y
11 9 10 syld3an3 KOMLXBYBXC˙Y˙XC˙Y
12 4 11 bitrd KOMLXBYBXCY˙XC˙Y