| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oldmm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
oldmm1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
oldmm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
oldmm1.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 5 |
1 2 3 4
|
oldmm4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) ) |
| 7 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 9 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 11 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 |
7 11
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 15 |
7 14
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 17 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 18 |
10 13 16 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 19 |
1 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| 20 |
8 18 19
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| 21 |
6 20
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |