Step |
Hyp |
Ref |
Expression |
1 |
|
oldmm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
oldmm1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
oldmm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
oldmm1.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
5 |
1 2 3 4
|
oldmm4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) ) |
7 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
9 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
11 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
7 11
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
14 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
15 |
7 14
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
17 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
18 |
10 13 16 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
19 |
1 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
20 |
8 18 19
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
21 |
6 20
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |