| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djacl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | djacl.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | djacl.i | ⊢ 𝐼  =  ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | djacl.j | ⊢ 𝐽  =  ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 | 1 2 3 5 4 | djavalN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( 𝑋 𝐽 𝑌 )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) ) ) | 
						
							| 7 |  | inss1 | ⊢ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) )  ⊆  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) | 
						
							| 8 | 1 2 3 5 | docaclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑇 )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∈  ran  𝐼 ) | 
						
							| 9 | 8 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∈  ran  𝐼 ) | 
						
							| 10 | 1 2 3 | diaelrnN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∈  ran  𝐼 )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ⊆  𝑇 ) | 
						
							| 11 | 9 10 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ⊆  𝑇 ) | 
						
							| 12 | 7 11 | sstrid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) )  ⊆  𝑇 ) | 
						
							| 13 | 1 2 3 5 | docaclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) )  ⊆  𝑇 )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) )  ∈  ran  𝐼 ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) )  ∈  ran  𝐼 ) | 
						
							| 15 | 6 14 | eqeltrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ⊆  𝑇  ∧  𝑌  ⊆  𝑇 ) )  →  ( 𝑋 𝐽 𝑌 )  ∈  ran  𝐼 ) |