Step |
Hyp |
Ref |
Expression |
1 |
|
dnicn.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
1
|
dnif |
|- T : RR --> RR |
3 |
|
simpr |
|- ( ( y e. RR /\ e e. RR+ ) -> e e. RR+ ) |
4 |
|
simplr |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> z e. RR ) |
5 |
1 4
|
dnicld2 |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( T ` z ) e. RR ) |
6 |
|
simplll |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> y e. RR ) |
7 |
1 6
|
dnicld2 |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( T ` y ) e. RR ) |
8 |
5 7
|
resubcld |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( ( T ` z ) - ( T ` y ) ) e. RR ) |
9 |
8
|
recnd |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( ( T ` z ) - ( T ` y ) ) e. CC ) |
10 |
9
|
abscld |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) e. RR ) |
11 |
4 6
|
resubcld |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( z - y ) e. RR ) |
12 |
11
|
recnd |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( z - y ) e. CC ) |
13 |
12
|
abscld |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( abs ` ( z - y ) ) e. RR ) |
14 |
3
|
ad2antrr |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> e e. RR+ ) |
15 |
14
|
rpred |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> e e. RR ) |
16 |
1 6 4
|
dnibnd |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) <_ ( abs ` ( z - y ) ) ) |
17 |
|
simpr |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( abs ` ( z - y ) ) < e ) |
18 |
10 13 15 16 17
|
lelttrd |
|- ( ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) /\ ( abs ` ( z - y ) ) < e ) -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) |
19 |
18
|
ex |
|- ( ( ( y e. RR /\ e e. RR+ ) /\ z e. RR ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) |
20 |
19
|
ralrimiva |
|- ( ( y e. RR /\ e e. RR+ ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) |
21 |
|
breq2 |
|- ( d = e -> ( ( abs ` ( z - y ) ) < d <-> ( abs ` ( z - y ) ) < e ) ) |
22 |
21
|
rspceaimv |
|- ( ( e e. RR+ /\ A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) |
23 |
3 20 22
|
syl2anc |
|- ( ( y e. RR /\ e e. RR+ ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) |
24 |
23
|
rgen2 |
|- A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) |
25 |
|
ax-resscn |
|- RR C_ CC |
26 |
|
elcncf2 |
|- ( ( RR C_ CC /\ RR C_ CC ) -> ( T e. ( RR -cn-> RR ) <-> ( T : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) ) ) |
27 |
25 25 26
|
mp2an |
|- ( T e. ( RR -cn-> RR ) <-> ( T : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( T ` z ) - ( T ` y ) ) ) < e ) ) ) |
28 |
2 24 27
|
mpbir2an |
|- T e. ( RR -cn-> RR ) |