Step |
Hyp |
Ref |
Expression |
1 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
2 |
1
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
3 |
|
cnring |
|- CCfld e. Ring |
4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
5 |
4
|
subrgid |
|- ( CCfld e. Ring -> CC e. ( SubRing ` CCfld ) ) |
6 |
3 5
|
ax-mp |
|- CC e. ( SubRing ` CCfld ) |
7 |
|
dvnply2 |
|- ( ( CC e. ( SubRing ` CCfld ) /\ F e. ( Poly ` CC ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) |
8 |
6 7
|
mp3an1 |
|- ( ( F e. ( Poly ` CC ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) |
9 |
2 8
|
sylan |
|- ( ( F e. ( Poly ` S ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) |