Description: Restricted converse epsilon coset of B . (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eccnvepres | |- ( B e. V -> [ B ] ( `' _E |` A ) = { x e. B | B e. A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvep | |- ( B e. V -> ( B `' _E x <-> x e. B ) ) |
|
| 2 | 1 | anbi1cd | |- ( B e. V -> ( ( B e. A /\ B `' _E x ) <-> ( x e. B /\ B e. A ) ) ) |
| 3 | 2 | abbidv | |- ( B e. V -> { x | ( B e. A /\ B `' _E x ) } = { x | ( x e. B /\ B e. A ) } ) |
| 4 | ecres | |- [ B ] ( `' _E |` A ) = { x | ( B e. A /\ B `' _E x ) } |
|
| 5 | df-rab | |- { x e. B | B e. A } = { x | ( x e. B /\ B e. A ) } |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( B e. V -> [ B ] ( `' _E |` A ) = { x e. B | B e. A } ) |