Metamath Proof Explorer


Theorem eccnvepres

Description: Restricted converse epsilon coset of B . (Contributed by Peter Mazsa, 11-Feb-2018) (Revised by Peter Mazsa, 21-Oct-2021)

Ref Expression
Assertion eccnvepres
|- ( B e. V -> [ B ] ( `' _E |` A ) = { x e. B | B e. A } )

Proof

Step Hyp Ref Expression
1 brcnvep
 |-  ( B e. V -> ( B `' _E x <-> x e. B ) )
2 1 anbi1cd
 |-  ( B e. V -> ( ( B e. A /\ B `' _E x ) <-> ( x e. B /\ B e. A ) ) )
3 2 abbidv
 |-  ( B e. V -> { x | ( B e. A /\ B `' _E x ) } = { x | ( x e. B /\ B e. A ) } )
4 ecres
 |-  [ B ] ( `' _E |` A ) = { x | ( B e. A /\ B `' _E x ) }
5 df-rab
 |-  { x e. B | B e. A } = { x | ( x e. B /\ B e. A ) }
6 3 4 5 3eqtr4g
 |-  ( B e. V -> [ B ] ( `' _E |` A ) = { x e. B | B e. A } )