| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ere |  |-  _e e. RR | 
						
							| 2 | 1 | recni |  |-  _e e. CC | 
						
							| 3 |  | ene0 |  |-  _e =/= 0 | 
						
							| 4 |  | cxpef |  |-  ( ( _e e. CC /\ _e =/= 0 /\ A e. CC ) -> ( _e ^c A ) = ( exp ` ( A x. ( log ` _e ) ) ) ) | 
						
							| 5 | 2 3 4 | mp3an12 |  |-  ( A e. CC -> ( _e ^c A ) = ( exp ` ( A x. ( log ` _e ) ) ) ) | 
						
							| 6 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 7 | 6 | oveq2i |  |-  ( A x. ( log ` _e ) ) = ( A x. 1 ) | 
						
							| 8 |  | mulrid |  |-  ( A e. CC -> ( A x. 1 ) = A ) | 
						
							| 9 | 7 8 | eqtrid |  |-  ( A e. CC -> ( A x. ( log ` _e ) ) = A ) | 
						
							| 10 | 9 | fveq2d |  |-  ( A e. CC -> ( exp ` ( A x. ( log ` _e ) ) ) = ( exp ` A ) ) | 
						
							| 11 | 5 10 | eqtrd |  |-  ( A e. CC -> ( _e ^c A ) = ( exp ` A ) ) |