Metamath Proof Explorer


Theorem ecxp

Description: Write the exponential function as an exponent to the power _e . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion ecxp A e A = e A

Proof

Step Hyp Ref Expression
1 ere e
2 1 recni e
3 ene0 e 0
4 cxpef e e 0 A e A = e A log e
5 2 3 4 mp3an12 A e A = e A log e
6 loge log e = 1
7 6 oveq2i A log e = A 1
8 mulid1 A A 1 = A
9 7 8 eqtrid A A log e = A
10 9 fveq2d A e A log e = e A
11 5 10 eqtrd A e A = e A